Materials System

The material system is the primary mechanism for defining spatially varying properties. The system allows properties to be defined in a single object (a Material) and shared among the many other systems such as the Kernel or BoundaryCondition systems. Material objects are designed to directly couple to solution variables as well as other materials and therefore allow for capturing the true nonlinear behavior of the equations.

The material system relies on a producer/consumer relationship: Material objects produce properties and other objects (including materials) consume these properties.

The properties are produced on demand, thus the computed values are always up to date. For example, a property that relies on a solution variable (e.g., thermal conductivity as function of temperature) will be computed with the current temperature during the solve iterations, so the properties are tightly coupled.

The material system supports the use of automatic differentiation for property calculations, as such there are two approaches for producing and consuming properties: with and without automatic differentiation. The following sections detail the producing and consuming properties using the two approaches. To further understand automatic differentiation, please refer to the Automatic Differentiation page for more information.

The proceeding sections briefly describe the different aspects of a Material object for producing and computing the properties as well as how other objects consume the properties. For an example of how a Material object is created and used please refer to Example 8 : Material Properties.

Producing/Computing Properties

Properties must be produced by a Material object by declaring the property with one of two methods:

  1. declareProperty<TYPE>("property_name") declares a property with a name "property_name" to be computed by the Material object.

  2. declareADProperty<TYPE> declares a property with a name "property_name" to be computed by the Material object that will include automatic differentiation.

The TYPE is any valid C++ type such an int or Real or std::vector<Real>. The properties must then be computed within the computeQpProperties method defined within the object.

The property name is an arbitrary name of the property, this name should be set such that it corresponds to the value be computed (e.g., "diffusivity"). The name provided here is the same name that will be used for consuming the property. More information on names is provided in Property Names section below.

For example, consider a simulation that requires a diffusivity term. In the Material object header a property is declared (in the C++ since) as follows.

  MaterialProperty<Real> & _diffusivity;

All properties will either be a MaterialProperty<TYPE> or ADMaterialProperty<TYPE> and must be a non-const reference. Again, the TYPE can be any C++ type. In this example, a scalar Real number is being used.

In the source file the reference is initialized in the initialization list using the aforementioned declare functions as follows. This declares the property (in the material property sense) to be computed.


The final step for producing a property is to compute the value. The computation occurs within a Material object computeQpProperties method. As the method name suggests, the purpose of the method is to compute the values of properties at a quadrature point. This method is a virtual method that must be overridden. To do this, in the header the virtual method is declared (again in the C++ sense).

  virtual void computeQpProperties() override;

In the source file the method is defined. For the current example this definition computes the "diffusivity" as well another term, refer to Example 8 : Material Properties.

  // Diffusivity is the value of the interpolated piece-wise function described by the user
  _diffusivity[_qp] = _piecewise_func.sample(_q_point[_qp](2));

  // Convection velocity is set equal to the gradient of the variable set by the user.
  _convection_velocity[_qp] = _diffusion_gradient[_qp];

The purpose of the content of this method is to assign values for the properties at a quadrature point. Recall that "_diffusivity" is a reference to a MaterialProperty type. The MaterialProperty type is a container that stores the values of a property for each quadrature point. Therefore, this container must be indexed by _qp to compute the value for a specific quadrature point.

Consuming Properties

Objects that require material properties consume them using one of two functions

  1. getMaterialProperty<TYPE>("property_name") retrieves a property with a name "property_name" to be consumed by the object.

  2. getADMaterialProperty<TYPE> retrieves a property with a name "property_name" to be consumed by the object that will include automatic differentiation.

For on object to consume a property the same basic procedure is followed. First in the consuming objects header file a MaterialProperty with the correct type (e.g., Real for the diffusivity example) is declared (in the C++ sense) as follows. Notice, that the member variable is a const reference. The const is important. Consuming objects cannot modify a property, it only uses the property so it is marked to be constant.

  const MaterialProperty<Real> & _diffusivity;

In the source file the reference is initialized in the initialization list using the aforementioned get methods. This method initializes the _diffusivity member variable to reference the desired value of the property as computed by the material object.

  : Diffusion(parameters), _diffusivity(getMaterialProperty<Real>("diffusivity"))

The name used in the get method, "diffusivity", in this case is not arbitrary. This name corresponds with the name used to declare the property in the material object.

note:The declare/get calls must correspond

If a material property is declared for automatic differentiation (AD) using declareADProperty then it must be consumed with the getADMaterialProperty. The same is true for non-automatic differentiation; properties declared with declareProperty must be consumed with the getMaterialProperty method.

Property Names

When creating a Material object and declaring the properties that shall be computed, it is often desirable to allow for the property name to be changed via the input file. This may be accomplished by adding an input parameter for assigning the name. For example, considering the example above the following code snippet adds an input parameter, "diffusivity_name", that allows the input file to set the name of the diffusivity property, but by default the name remains "diffusivity".

params.addParam<MaterialPropertyName>("diffusivity_name", "diffusivity",
                                      "The name of the diffusivity material property.");

In the material object, the declare function is simply changed to use the parameter name rather than string by itself. By default a property will be declared with the name "diffusivity".


However, if the user wants to alter this name to something else, such as "not_diffusivity" then the input parameter "diffusivity_name" is simply added to the input file block for the material.

    type = ExampleMaterial
    diffusivity_name = not_diffusivity

On the consumer side, the get method will now be required to use the name "not_diffusivity" to retrieve the property. Consuming objects can also use the same procedure to allow for custom property names by adding a parameter and using the parameter name in the get method in the same fashion.

Default Material Properties

The index.html#material-name input parameter also provides the ability to set default values for scalar (Real) properties. In the above example, the input file can use number or parsed function (see ParsedFunction) to define a the property value. For example, the input snippet above could set a constant value.

    type = ExampleMaterial
    diffusivity_name = 12345

Stateful Material Properties

In general properties are computed on demand and not stored. However, in some cases values of material properties from a previous timestep may be required. To access properties two methods exist:

  • getMaterialPropertyOld<TYPE> returns a reference to the property from the previous timestep.

  • getMaterialPropertyOlder<TYPE> returns a reference to the property from two timesteps before the current.

This is often referred to as a "state" variable, in MOOSE we refer to them as "stateful material properties." As stated, material properties are usually computed on demand.

warning:Stateful properties will increase memory use

When a stateful property is requested through one of the above methods this is no longer the case. When it is computed the value is also stored for every quadrature point on every element. As such, stateful properties can become memory intensive, especially if the property being stored is a vector or tensor value.

Material Property Output

Output of Material properties is enabled by setting the "outputs" parameter. The following example creates two additional variables called "mat1" and "mat2" that will show up in the output file.

    type = OutputTestMaterial
    block = 1
    output_properties = 'real_property tensor_property'
    outputs = exodus
    variable = u
    type = OutputTestMaterial
    block = 2
    output_properties = 'vector_property tensor_property'
    outputs = exodus
    variable = u

  exodus = true

Material properties can be of arbitrary (C++) type, but not all types can be output. The following table lists the types of properties that are available for automatic output.

TypeAuxKernelVariable Name(s)
RealVectorValueMaterialRealVectorValueAuxprop_1, prop_2, and prop_3
RealTensorValueMaterialRealTensorValueAuxprop_11, prop_12, prop_13, prop_21, etc.

Advanced Topics

Discrete Material Objects

A "Discrete" Material is an object that may be detached from MOOSE and computed explicitly from other objects. An object inheriting from MaterialPropertyInterface may explicitly call the compute methods of a Material object via the getMaterial method.

The following should be considered when computing Material properties explicitly.

  • It is possible to disable the automatic computation of a Material object by MOOSE by setting the compute=false parameter.

  • When compute=false is set the compute method (computeQpProperties) is not called by MOOSE, instead it must be called explicitly in your application using the computeProperties method that accepts a quadrature point index.

  • When compute=false an additional method should be defined, resetQpProperties, which sets the properties to a safe value (e.g., 0) for later calls to the compute method. Not doing this can lead to erroneous material properties values.

The original intent for this functionality was to enable to ability for material properties to be computed via iteration by another object, as in the following example. First, consider define a material (RecomputeMaterial) that computes the value of a function and its derivative.


where v is known value and not a function of p. The following is the compute portion of this object.

  Real x = _p[_qp];
  _f[_qp] = x * x - _constant;
  _f_prime[_qp] = 2 * x;

Second, define another material (NewtonMaterial) that computes the value of using Newton iterations. This material declares a material property (_p) which is what is solved for by iterating on the material properties containing f and f' from RecomputeMaterial. The _discrete member is a reference to a Material object retrieved with getMaterial.

  _p[_qp] = 0.5; // initial guess

  // Newton iteration for find p
  for (unsigned int i = 0; i < _max_iterations; ++i)
    _p[_qp] -= _f[_qp] / _f_prime[_qp];
    if (std::abs(_f[_qp]) < _tol)

To create and use a "Discrete" Material use the following to guide the process.

  1. Create a Material object by, in typical MOOSE fashion, inheriting from the Material object in your own application.

  2. In your input file, set compute=false for this new object.

  3. From within another object (e.g., another Material) that inherits from MaterialPropertyInterface call the getMaterial method. Note, this method returns a reference to a Material object, be sure to include & when calling or declaring the variable.

  4. When needed, call the computeProperties method of the Material being sure to provide the current quadrature point index to the method (_qp in most cases).

Available Objects

Available Actions