Line Material Rank Two Scalar Sampler

Compute a scalar property of a RankTwoTensor

Description

The postprocessor LineMaterialRankTwoScalarSampler is used to output common scalar quantities computed from Rank-2 tensors along a user-defined line in the mesh. The postprocessor computes the same set of scalar quantities as the AuxKernel RankTwoScalarAux; for a full list of the available scalar quantities refer to the RankTwoScalarAux page.

The user must supply the start and end points of the line along which the Rank-2 tensor scalar quantity should be tracked. Often this class is used to track stress or strain along an exterior or interior edge of the mesh.

Example Input File Syntax

[./vonmises]
  type = LineMaterialRankTwoScalarSampler
  start = '0.1667 0.4 0.45'
  end = '0.8333 0.6 0.55'
  property = stress
  scalar_type = VonMisesStress
  sort_by = id
[../]
(modules/solid_mechanics/test/tests/line_material_rank_two_sampler/rank_two_scalar_sampler.i)

Input Parameters

  • endThe end of the line

    C++ Type:libMesh::Point

    Controllable:No

    Description:The end of the line

  • propertyName of the material property to be output along a line

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Name of the material property to be output along a line

  • sort_byWhat to sort the samples by

    C++ Type:MooseEnum

    Options:x, y, z, id

    Controllable:No

    Description:What to sort the samples by

  • startThe beginning of the line

    C++ Type:libMesh::Point

    Controllable:No

    Description:The beginning of the line

Required Parameters

  • _auto_broadcastFalse

    Default:False

    C++ Type:bool

    Controllable:No

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • contains_complete_historyFalseSet this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Set this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation

  • direction0 0 1Direction vector

    Default:0 0 1

    C++ Type:libMesh::Point

    Controllable:No

    Description:Direction vector

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

  • parallel_typeREPLICATEDSet how the data is represented within the VectorPostprocessor (VPP); 'distributed' indicates that data within the VPP is distributed and no auto communication is performed, this setting will result in parallel output within the CSV output; 'replicated' indicates that the data within the VPP is correct on processor 0, the data will automatically be broadcast to all processors unless the '_auto_broadcast' param is set to false within the validParams function.

    Default:REPLICATED

    C++ Type:MooseEnum

    Options:DISTRIBUTED, REPLICATED

    Controllable:No

    Description:Set how the data is represented within the VectorPostprocessor (VPP); 'distributed' indicates that data within the VPP is distributed and no auto communication is performed, this setting will result in parallel output within the CSV output; 'replicated' indicates that the data within the VPP is correct on processor 0, the data will automatically be broadcast to all processors unless the '_auto_broadcast' param is set to false within the validParams function.

  • point10 0 0Start point for axis used to calculate some cylindrical material tensor quantities

    Default:0 0 0

    C++ Type:libMesh::Point

    Controllable:No

    Description:Start point for axis used to calculate some cylindrical material tensor quantities

  • point20 1 0End point for axis used to calculate some material tensor quantities

    Default:0 1 0

    C++ Type:libMesh::Point

    Controllable:No

    Description:End point for axis used to calculate some material tensor quantities

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • scalar_typeA scalar to output

    C++ Type:MooseEnum

    Options:VonMisesStress, EffectiveStrain, Hydrostatic, L2norm, MaxPrincipal, MidPrincipal, MinPrincipal, VolumetricStrain, FirstInvariant, SecondInvariant, ThirdInvariant, AxialStress, HoopStress, RadialStress, TriaxialityStress, Direction, MaxShear, StressIntensity

    Controllable:No

    Description:A scalar to output

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • outputsVector of output names where you would like to restrict the output of variables(s) associated with this object

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files