ContactDOFSetSize

The ContactDOFSetSize class outputs the number of degrees of freedom greater than a certain tolerance (specified through the tolerance parameter; the default value is 1e-6). The usual application of this, as indicated by the class name, is to indicate how many nodes (if using first order Lagrange shape functions for the contact pressure lagrange multiplier) or element faces (if using constant monomials) are in contact. The subdomain parameter should be the name or id representing the lower dimensional block that the Lagrange multiplier variable lives on.

Description and Syntax

Outputs the number of dofs greater than a tolerance threshold indicating mechanical contact

Input Parameters

  • subdomainThe subdomain that the variable lives on

    C++ Type:SubdomainName

    Options:

    Description:The subdomain that the variable lives on

  • variableThe name of the variable to test for contact

    C++ Type:VariableName

    Options:

    Description:The name of the variable to test for contact

Required Parameters

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE INITIAL LINEAR NONLINEAR TIMESTEP_END TIMESTEP_BEGIN FINAL CUSTOM TRANSFER

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

  • tolerance1e-06The tolerance for accepting that the variable indicates contact

    Default:1e-06

    C++ Type:double

    Options:

    Description:The tolerance for accepting that the variable indicates contact

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Options:

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • force_preauxFalseForces the GeneralUserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Options:

    Description:Forces the GeneralUserObject to be executed in PREAUX

  • force_preicFalseForces the GeneralUserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Options:

    Description:Forces the GeneralUserObject to be executed in PREIC during initial setup

  • outputsVector of output names were you would like to restrict the output of variables(s) associated with this object

    C++ Type:std::vector

    Options:

    Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Options:

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files

References