Expression Builder

Build FParser expressions using C++ operator overloading

Mixing in the ExpressionBuilder class into your MOOSE classes will allow you to build FParser expressions using familiar C++ syntax.



Variables used in your expressions are of type EBTerm. The following declares three variables that can be used in an expression:

EBTerm c1("c1"), c2("c3"), phi("phi");


Declare a function G and define it:

EBFunction G;

G(c1, c2, c3) = c1 + 2 * c2 + 3 * pow(c3, 2);

Performing a substitution is as easy as:

EBFunction H;

H(c1, c2) = G(c1, c2, 1-c1-c2)

Use the << io operator to output functions or terms. Or use explicit or implicit casts from EBFunction to std::string to pass a function to the FParse Parse method. FParser variables are built using the args() method.

FunctionParserADBase<Real> GParser;

GParser.Parse(G, G.args);


To use ExpressionBuilder inherit from it in addition to the base class your free energy material is based on. A common scenario is to inherit from DerivativeParsedMaterialHelper and ExpressionBuilder. The class definition would be:

class ExampleFreeEnergy : public DerivativeParsedMaterialHelper,
                          public ExpressionBuilder
  ExampleFreeEnergy(const InputParameters & parameters);

  /// Variables used in the free energy
  EBTerm _T, _c;

  /// Boltzmann constant
  const Real _kB;

The free energy expression would then be built in the constructor.

InputParameters validParams<ExampleFreeEnergy>()
  InputParameters params = validParams<DerivativeParsedMaterialHelper>();
  params.addClassDescription("Example derivative free energy material");
  params.addRequiredCoupledVar("T", "Temperature");
  params.addRequiredCoupledVar("c", "Concentration");
  return params;

ExampleFreeEnergy::ExampleFreeEnergy(const InputParameters & parameters) :
    _T("T"), // we use the names from validParams for the variables
  EBFunction G, Grand;

  // configurational entropy contribution
  Grand(_c,_T) = _kB * _T * (_c*log(_c) + (1-_c)*log(1-_c));

  // Total free energy
  G(_c,_T) = _c*_c*(1-_c)*(1-_c) + _Grand(_c,_T);


That's it. The functionParse call will generate, optimize, and (if selected by the user through the enable_jit config parameter) compile the function and its derivatives.

All named variables declared through EBTerm var("name") will be substituted by the coupled variables of the same name.

See also