libMesh
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Types | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Attributes | List of all members
libMesh::TransientRBConstruction Class Reference

This class is part of the rbOOmit framework. More...

#include <transient_rb_construction.h>

Inheritance diagram for libMesh::TransientRBConstruction:
[legend]

Public Types

typedef TransientRBConstruction sys_type
 The type of system. More...
 
typedef TransientSystem< RBConstructionParent
 The type of the parent. More...
 
typedef Number(* ValueFunctionPointer) (const Point &p, const Parameters &Parameters, const std::string &sys_name, const std::string &unknown_name)
 Projects arbitrary functions onto the current solution. More...
 
typedef Gradient(* GradientFunctionPointer) (const Point &p, const Parameters &parameters, const std::string &sys_name, const std::string &unknown_name)
 
typedef std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::iterator vectors_iterator
 Vector iterator typedefs. More...
 
typedef std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::const_iterator const_vectors_iterator
 
typedef std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::iterator matrices_iterator
 Matrix iterator typedefs. More...
 
typedef std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::const_iterator const_matrices_iterator
 

Public Member Functions

 TransientRBConstruction (EquationSystems &es, const std::string &name, const unsigned int number)
 Constructor. More...
 
 TransientRBConstruction (TransientRBConstruction &&)=default
 Special functions. More...
 
 TransientRBConstruction (const TransientRBConstruction &)=delete
 
TransientRBConstructionoperator= (const TransientRBConstruction &)=delete
 
TransientRBConstructionoperator= (TransientRBConstruction &&)=delete
 
virtual ~TransientRBConstruction ()
 
virtual void clear () override
 Clear all the data structures associated with the system. More...
 
virtual void initialize_rb_construction (bool skip_matrix_assembly=false, bool skip_vector_assembly=false) override
 Allocate all the data structures necessary for the construction stage of the RB method. More...
 
virtual Real truth_solve (int write_interval) override
 Perform a truth solve at the current parameter. More...
 
virtual Real train_reduced_basis (const bool resize_rb_eval_data=true) override
 Train the reduced basis. More...
 
virtual void process_parameters_file (const std::string &parameters_filename) override
 Read in the parameters from file and set up the system accordingly. More...
 
virtual void print_info () const override
 Print out info that describes the current setup of this RBConstruction. More...
 
virtual bool greedy_termination_test (Real abs_greedy_error, Real initial_greedy_error, int count) override
 Function that indicates when to terminate the Greedy basis training. More...
 
virtual void assemble_all_affine_operators () override
 Assemble and store all the affine operators. More...
 
virtual void assemble_misc_matrices () override
 Override to assemble the L2 matrix as well. More...
 
void assemble_L2_matrix (SparseMatrix< Number > *input_matrix, bool apply_dirichlet_bc=true)
 Assemble the L2 matrix. More...
 
void assemble_mass_matrix (SparseMatrix< Number > *input_matrix)
 Assemble the mass matrix at the current parameter and store it in input_matrix. More...
 
void add_scaled_mass_matrix (Number scalar, SparseMatrix< Number > *input_matrix)
 Add the scaled mass matrix (assembled for the current parameter) to input_matrix. More...
 
void mass_matrix_scaled_matvec (Number scalar, NumericVector< Number > &dest, NumericVector< Number > &arg)
 Perform a matrix-vector multiplication with the current mass matrix and store the result in dest. More...
 
void set_L2_assembly (ElemAssembly &L2_assembly_in)
 Set the L2 object. More...
 
ElemAssemblyget_L2_assembly ()
 
void assemble_Mq_matrix (unsigned int q, SparseMatrix< Number > *input_matrix, bool apply_dirichlet_bc=true)
 Assemble the q^th affine term of the mass matrix and store it in input_matrix. More...
 
SparseMatrix< Number > * get_M_q (unsigned int q)
 Get a pointer to M_q. More...
 
SparseMatrix< Number > * get_non_dirichlet_M_q (unsigned int q)
 Get a pointer to non_dirichlet_M_q. More...
 
virtual void get_all_matrices (std::map< std::string, SparseMatrix< Number > *> &all_matrices) override
 Get a map that stores pointers to all of the matrices. More...
 
virtual void truth_assembly () override
 Assemble the truth system in the transient linear case. More...
 
int get_max_truth_solves () const
 Get/set max_truth_solves, the maximum number of RB truth solves we are willing to compute in the transient case. More...
 
void set_max_truth_solves (int max_truth_solves_in)
 
Real get_POD_tol () const
 Get/set POD_tol. More...
 
void set_POD_tol (const Real POD_tol_in)
 
void set_delta_N (const unsigned int new_delta_N)
 Set delta_N, the number of basis functions we add to the RB space from each POD. More...
 
virtual void load_rb_solution () override
 Load the RB solution from the current time-level into the libMesh solution vector. More...
 
const NumericVector< Number > & get_error_temporal_data ()
 Get the column of temporal_data corresponding to the current time level. More...
 
void update_RB_initial_condition_all_N ()
 Compute the L2 projection of the initial condition onto the RB space for 1 <= N <= RB_size and store each projection in RB_initial_condition_matrix. More...
 
virtual void write_riesz_representors_to_files (const std::string &riesz_representors_dir, const bool write_binary_residual_representors) override
 Write out all the Riesz representor data to files. More...
 
virtual void read_riesz_representors_from_files (const std::string &riesz_representors_dir, const bool write_binary_residual_representors) override
 Write out all the Riesz representor data to files. More...
 
sys_typesystem ()
 
virtual std::string system_type () const override
 
Number old_solution (const dof_id_type global_dof_number) const
 
Number older_solution (const dof_id_type global_dof_number) const
 
virtual void solve_for_matrix_and_rhs (LinearSolver< Number > &input_solver, SparseMatrix< Number > &input_matrix, NumericVector< Number > &input_rhs)
 Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side rhs. More...
 
void set_rb_evaluation (RBEvaluation &rb_eval_in)
 Set the RBEvaluation object. More...
 
RBEvaluationget_rb_evaluation ()
 Get a reference to the RBEvaluation object. More...
 
const RBEvaluationget_rb_evaluation () const
 
bool is_rb_eval_initialized () const
 
RBThetaExpansionget_rb_theta_expansion ()
 Get a reference to the RBThetaExpansion object that that belongs to rb_eval. More...
 
const RBThetaExpansionget_rb_theta_expansion () const
 
void set_rb_assembly_expansion (RBAssemblyExpansion &rb_assembly_expansion_in)
 Set the rb_assembly_expansion object. More...
 
RBAssemblyExpansionget_rb_assembly_expansion ()
 
Real train_reduced_basis_with_greedy (const bool resize_rb_eval_data)
 Train the reduced basis using the "Greedy algorithm.". More...
 
void enrich_basis_from_rhs_terms (const bool resize_rb_eval_data=true)
 This function computes one basis function for each rhs term. More...
 
void train_reduced_basis_with_POD ()
 Train the reduced basis using Proper Orthogonal Decomposition (POD). More...
 
virtual Real compute_max_error_bound ()
 (i) Compute the a posteriori error bound for each set of parameters in the training set, (ii) set current_parameters to the parameters that maximize the error bound, and (iii) return the maximum error bound. More...
 
const RBParametersget_greedy_parameter (unsigned int i)
 Return the parameters chosen during the i^th step of the Greedy algorithm. More...
 
void set_rel_training_tolerance (Real new_training_tolerance)
 Get/set the relative tolerance for the basis training. More...
 
Real get_rel_training_tolerance () const
 
void set_abs_training_tolerance (Real new_training_tolerance)
 Get/set the absolute tolerance for the basis training. More...
 
Real get_abs_training_tolerance () const
 
void set_normalize_rb_bound_in_greedy (bool normalize_rb_bound_in_greedy_in)
 Get/set the boolean to indicate if we normalize the RB error in the greedy. More...
 
bool get_normalize_rb_bound_in_greedy () const
 
void set_RB_training_type (const std::string &RB_training_type_in)
 Get/set the string that determines the training type. More...
 
const std::string & get_RB_training_type () const
 
unsigned int get_Nmax () const
 Get/set Nmax, the maximum number of RB functions we are willing to compute. More...
 
virtual void set_Nmax (unsigned int Nmax)
 
virtual void load_basis_function (unsigned int i)
 Load the i^th RB function into the RBConstruction solution vector. More...
 
Real compute_residual_dual_norm_slow (const unsigned int N)
 The slow (but simple, non-error prone) way to compute the residual dual norm. More...
 
SparseMatrix< Number > * get_inner_product_matrix ()
 Get a pointer to inner_product_matrix. More...
 
const SparseMatrix< Number > * get_inner_product_matrix () const
 
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix ()
 Get the non-Dirichlet (or more generally no-constraints) version of the inner-product matrix. More...
 
const SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix () const
 
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail ()
 Get the non-Dirichlet inner-product matrix if it's available, otherwise get the inner-product matrix with constraints. More...
 
const SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail () const
 
SparseMatrix< Number > * get_Aq (unsigned int q)
 Get a pointer to Aq. More...
 
SparseMatrix< Number > * get_non_dirichlet_Aq (unsigned int q)
 Get a pointer to non_dirichlet_Aq. More...
 
SparseMatrix< Number > * get_non_dirichlet_Aq_if_avail (unsigned int q)
 Get a pointer to non_dirichlet_Aq if it's available, otherwise get Aq. More...
 
NumericVector< Number > * get_Fq (unsigned int q)
 Get a pointer to Fq. More...
 
NumericVector< Number > * get_non_dirichlet_Fq (unsigned int q)
 Get a pointer to non-Dirichlet Fq. More...
 
NumericVector< Number > * get_non_dirichlet_Fq_if_avail (unsigned int q)
 Get a pointer to non_dirichlet_Fq if it's available, otherwise get Fq. More...
 
NumericVector< Number > * get_output_vector (unsigned int n, unsigned int q_l)
 Get a pointer to the n^th output. More...
 
NumericVector< Number > * get_non_dirichlet_output_vector (unsigned int n, unsigned int q_l)
 Get a pointer to non-Dirichlet output vector. More...
 
virtual void get_all_vectors (std::map< std::string, NumericVector< Number > *> &all_vectors)
 Get a map that stores pointers to all of the vectors. More...
 
virtual void get_output_vectors (std::map< std::string, NumericVector< Number > *> &all_vectors)
 Get a map that stores pointers to all of the vectors. More...
 
void assemble_inner_product_matrix (SparseMatrix< Number > *input_matrix, bool apply_dof_constraints=true)
 Assemble the inner product matrix and store it in input_matrix. More...
 
void assemble_Aq_matrix (unsigned int q, SparseMatrix< Number > *input_matrix, bool apply_dof_constraints=true)
 Assemble the q^th affine matrix and store it in input_matrix. More...
 
void assemble_Fq_vector (unsigned int q, NumericVector< Number > *input_vector, bool apply_dof_constraints=true)
 Assemble the q^th affine vector and store it in input_matrix. More...
 
void add_scaled_Aq (Number scalar, unsigned int q_a, SparseMatrix< Number > *input_matrix, bool symmetrize)
 Add the scaled q^th affine matrix to input_matrix. More...
 
virtual void recompute_all_residual_terms (const bool compute_inner_products=true)
 This function computes all of the residual representors, can be useful when restarting a basis training computation. More...
 
void set_rb_construction_parameters (unsigned int n_training_samples_in, bool deterministic_training_in, int training_parameters_random_seed_in, bool quiet_mode_in, unsigned int Nmax_in, Real rel_training_tolerance_in, Real abs_training_tolerance_in, bool normalize_rb_error_bound_in_greedy_in, const std::string &RB_training_type_in, const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values_in, const std::map< std::string, bool > &log_scaling, std::map< std::string, std::vector< RBParameter >> *training_sample_list=nullptr)
 Set the state of this RBConstruction object based on the arguments to this function. More...
 
void print_basis_function_orthogonality () const
 Print out a matrix that shows the orthogonality of the RB basis functions. More...
 
unsigned int get_delta_N () const
 Get delta_N, the number of basis functions we add to the RB space per iteration of the greedy algorithm. More...
 
void set_inner_product_assembly (ElemAssembly &inner_product_assembly_in)
 Set the rb_assembly_expansion object. More...
 
ElemAssemblyget_inner_product_assembly ()
 
void set_energy_inner_product (const std::vector< Number > &energy_inner_product_coeffs_in)
 Specify the coefficients of the A_q operators to be used in the energy inner-product. More...
 
void zero_constrained_dofs_on_vector (NumericVector< Number > &vector) const
 It is sometimes useful to be able to zero vector entries that correspond to constrained dofs. More...
 
virtual bool check_if_zero_truth_solve () const
 
void set_convergence_assertion_flag (bool flag)
 Setter for the flag determining if convergence should be checked after each solve. More...
 
bool get_preevaluate_thetas_flag () const
 Get/set flag to pre-evaluate the theta functions. More...
 
void set_preevaluate_thetas_flag (bool flag)
 
void set_quiet_mode (bool quiet_mode_in)
 Set the quiet_mode flag. More...
 
bool is_quiet () const
 Is the system in quiet mode? More...
 
numeric_index_type get_n_training_samples () const
 Get the number of global training samples. More...
 
numeric_index_type get_local_n_training_samples () const
 Get the total number of training samples local to this processor. More...
 
numeric_index_type get_first_local_training_index () const
 Get the first local index of the training parameters. More...
 
numeric_index_type get_last_local_training_index () const
 Get the last local index of the training parameters. More...
 
virtual void initialize_training_parameters (const RBParameters &mu_min, const RBParameters &mu_max, const unsigned int n_global_training_samples, const std::map< std::string, bool > &log_param_scale, const bool deterministic=true)
 Initialize the parameter ranges and indicate whether deterministic or random training parameters should be used and whether or not we want the parameters to be scaled logarithmically. More...
 
virtual void load_training_set (const std::map< std::string, std::vector< RBParameter >> &new_training_set)
 Overwrite the training parameters with new_training_set. More...
 
void set_training_parameter_values (const std::string &param_name, const std::vector< RBParameter > &values)
 Overwrite the local training samples for param_name using values. More...
 
void broadcast_parameters (const unsigned int proc_id)
 Broadcasts parameters from processor proc_id to all processors. More...
 
void set_training_random_seed (int seed)
 Set the seed that is used to randomly generate training parameters. More...
 
void set_deterministic_training_parameter_name (const std::string &name)
 In some cases we only want to allow discrete parameter values, instead of parameters that may take any value in a specified interval. More...
 
const std::string & get_deterministic_training_parameter_name () const
 Get the name of the parameter that we will generate deterministic training parameters for. More...
 
virtual void reinit () override
 Reinitializes the member data fields associated with the system, so that, e.g., assemble() may be used. More...
 
virtual void assemble () override
 Prepares matrix and _dof_map for matrix assembly. More...
 
virtual void restrict_solve_to (const SystemSubset *subset, const SubsetSolveMode subset_solve_mode=SUBSET_ZERO) override
 After calling this method, any solve will be limited to the given subset. More...
 
virtual void solve () override
 Assembles & solves the linear system A*x=b. More...
 
virtual LinearSolver< Number > * get_linear_solver () const override
 
virtual void assembly (bool get_residual, bool get_jacobian, bool apply_heterogeneous_constraints=false, bool apply_no_constraints=false) override
 Assembles a residual in rhs and/or a jacobian in matrix, as requested. More...
 
unsigned int n_linear_iterations () const
 
Real final_linear_residual () const
 
void attach_shell_matrix (ShellMatrix< Number > *shell_matrix)
 This function enables the user to provide a shell matrix, i.e. More...
 
void detach_shell_matrix ()
 Detaches a shell matrix. More...
 
ShellMatrix< Number > * get_shell_matrix ()
 
virtual void disable_cache () override
 Avoids use of any cached data that might affect any solve result. More...
 
virtual std::pair< unsigned int, Realget_linear_solve_parameters () const
 
virtual void release_linear_solver (LinearSolver< Number > *) const
 Currently a no-op. More...
 
virtual void assemble_residual_derivatives (const ParameterVector &parameters) override
 Residual parameter derivative function. More...
 
virtual std::pair< unsigned int, Realsensitivity_solve (const ParameterVector &parameters) override
 Assembles & solves the linear system(s) (dR/du)*u_p = -dR/dp, for those parameters contained within parameters. More...
 
virtual std::pair< unsigned int, Realweighted_sensitivity_solve (const ParameterVector &parameters, const ParameterVector &weights) override
 Assembles & solves the linear system(s) (dR/du)*u_w = sum(w_p*-dR/dp), for those parameters p contained within parameters weighted by the values w_p found within weights. More...
 
virtual std::pair< unsigned int, Realadjoint_solve (const QoISet &qoi_indices=QoISet()) override
 Assembles & solves the linear system (dR/du)^T*z = dq/du, for those quantities of interest q specified by qoi_indices. More...
 
virtual std::pair< unsigned int, Realweighted_sensitivity_adjoint_solve (const ParameterVector &parameters, const ParameterVector &weights, const QoISet &qoi_indices=QoISet()) override
 Assembles & solves the linear system(s) (dR/du)^T*z_w = sum(w_p*(d^2q/dudp - d^2R/dudp*z)), for those parameters p contained within parameters, weighted by the values w_p found within weights. More...
 
virtual void adjoint_qoi_parameter_sensitivity (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities) override
 Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j]. More...
 
virtual void forward_qoi_parameter_sensitivity (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities) override
 Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j]. More...
 
virtual void qoi_parameter_hessian (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &hessian) override
 For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) This Hessian is the output of this method, where for each q_i, H_jk is stored in hessian.second_derivative(i,j,k). More...
 
virtual void qoi_parameter_hessian_vector_product (const QoISet &qoi_indices, const ParameterVector &parameters, const ParameterVector &vector, SensitivityData &product) override
 For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) The Hessian-vector product, for a vector v_k in parameter space, is S_j = H_jk v_k This product is the output of this method, where for each q_i, S_j is stored in sensitivities[i][j]. More...
 
const SparseMatrix< Number > & get_system_matrix () const
 
SparseMatrix< Number > & get_system_matrix ()
 
virtual void assemble_qoi (const QoISet &qoi_indices=QoISet()) override
 Prepares qoi for quantity of interest assembly, then calls user qoi function. More...
 
virtual void assemble_qoi_derivative (const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true) override
 Prepares adjoint_rhs for quantity of interest derivative assembly, then calls user qoi derivative function. More...
 
void init ()
 Initializes degrees of freedom on the current mesh. More...
 
virtual void reinit_constraints ()
 Reinitializes the constraints for this system. More...
 
virtual void reinit_mesh ()
 Reinitializes the system with a new mesh. More...
 
bool is_initialized ()
 
virtual void update ()
 Update the local values to reflect the solution on neighboring processors. More...
 
bool is_adjoint_already_solved () const
 Accessor for the adjoint_already_solved boolean. More...
 
void set_adjoint_already_solved (bool setting)
 Setter for the adjoint_already_solved boolean. More...
 
virtual void qoi_parameter_sensitivity (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
 Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j]. More...
 
virtual bool compare (const System &other_system, const Real threshold, const bool verbose) const
 
const std::string & name () const
 
void project_solution (FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr) const
 Projects arbitrary functions onto the current solution. More...
 
void project_solution (FEMFunctionBase< Number > *f, FEMFunctionBase< Gradient > *g=nullptr) const
 Projects arbitrary functions onto the current solution. More...
 
void project_solution (ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters) const
 This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element. More...
 
void project_vector (NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
 Projects arbitrary functions onto a vector of degree of freedom values for the current system. More...
 
void project_vector (NumericVector< Number > &new_vector, FEMFunctionBase< Number > *f, FEMFunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
 Projects arbitrary functions onto a vector of degree of freedom values for the current system. More...
 
void project_vector (ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters, NumericVector< Number > &new_vector, int is_adjoint=-1) const
 Projects arbitrary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_solution (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr)
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_solution (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters)
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_vector (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_vector (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters, NumericVector< Number > &new_vector, int is_adjoint=-1) const
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
unsigned int number () const
 
void update_global_solution (std::vector< Number > &global_soln) const
 Fill the input vector global_soln so that it contains the global solution on all processors. More...
 
void update_global_solution (std::vector< Number > &global_soln, const processor_id_type dest_proc) const
 Fill the input vector global_soln so that it contains the global solution on processor dest_proc. More...
 
const MeshBaseget_mesh () const
 
MeshBaseget_mesh ()
 
const DofMapget_dof_map () const
 
DofMapget_dof_map ()
 
const EquationSystemsget_equation_systems () const
 
EquationSystemsget_equation_systems ()
 
bool active () const
 
void activate ()
 Activates the system. More...
 
void deactivate ()
 Deactivates the system. More...
 
void set_basic_system_only ()
 Sets the system to be "basic only": i.e. More...
 
vectors_iterator vectors_begin ()
 Beginning of vectors container. More...
 
const_vectors_iterator vectors_begin () const
 Beginning of vectors container. More...
 
vectors_iterator vectors_end ()
 End of vectors container. More...
 
const_vectors_iterator vectors_end () const
 End of vectors container. More...
 
NumericVector< Number > & add_vector (std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
 Adds the additional vector vec_name to this system. More...
 
void remove_vector (std::string_view vec_name)
 Removes the additional vector vec_name from this system. More...
 
bool & project_solution_on_reinit (void)
 Tells the System whether or not to project the solution vector onto new grids when the system is reinitialized. More...
 
bool have_vector (std::string_view vec_name) const
 
const NumericVector< Number > * request_vector (std::string_view vec_name) const
 
NumericVector< Number > * request_vector (std::string_view vec_name)
 
const NumericVector< Number > * request_vector (const unsigned int vec_num) const
 
NumericVector< Number > * request_vector (const unsigned int vec_num)
 
const NumericVector< Number > & get_vector (std::string_view vec_name) const
 
NumericVector< Number > & get_vector (std::string_view vec_name)
 
const NumericVector< Number > & get_vector (const unsigned int vec_num) const
 
NumericVector< Number > & get_vector (const unsigned int vec_num)
 
const std::string & vector_name (const unsigned int vec_num) const
 
const std::string & vector_name (const NumericVector< Number > &vec_reference) const
 
void set_vector_as_adjoint (const std::string &vec_name, int qoi_num)
 Allows one to set the QoI index controlling whether the vector identified by vec_name represents a solution from the adjoint (qoi_num >= 0) or primal (qoi_num == -1) space. More...
 
int vector_is_adjoint (std::string_view vec_name) const
 
void set_vector_preservation (const std::string &vec_name, bool preserve)
 Allows one to set the boolean controlling whether the vector identified by vec_name should be "preserved": projected to new meshes, saved, etc. More...
 
bool vector_preservation (std::string_view vec_name) const
 
NumericVector< Number > & add_adjoint_solution (unsigned int i=0)
 
NumericVector< Number > & get_adjoint_solution (unsigned int i=0)
 
const NumericVector< Number > & get_adjoint_solution (unsigned int i=0) const
 
NumericVector< Number > & add_sensitivity_solution (unsigned int i=0)
 
NumericVector< Number > & get_sensitivity_solution (unsigned int i=0)
 
const NumericVector< Number > & get_sensitivity_solution (unsigned int i=0) const
 
NumericVector< Number > & add_weighted_sensitivity_adjoint_solution (unsigned int i=0)
 
NumericVector< Number > & get_weighted_sensitivity_adjoint_solution (unsigned int i=0)
 
const NumericVector< Number > & get_weighted_sensitivity_adjoint_solution (unsigned int i=0) const
 
NumericVector< Number > & add_weighted_sensitivity_solution ()
 
NumericVector< Number > & get_weighted_sensitivity_solution ()
 
const NumericVector< Number > & get_weighted_sensitivity_solution () const
 
NumericVector< Number > & add_adjoint_rhs (unsigned int i=0)
 
NumericVector< Number > & get_adjoint_rhs (unsigned int i=0)
 
const NumericVector< Number > & get_adjoint_rhs (unsigned int i=0) const
 
NumericVector< Number > & add_sensitivity_rhs (unsigned int i=0)
 
NumericVector< Number > & get_sensitivity_rhs (unsigned int i=0)
 
const NumericVector< Number > & get_sensitivity_rhs (unsigned int i=0) const
 
unsigned int n_vectors () const
 
unsigned int n_matrices () const
 
unsigned int n_vars () const
 
unsigned int n_variable_groups () const
 
unsigned int n_components () const
 
dof_id_type n_dofs () const
 
dof_id_type n_active_dofs () const
 
dof_id_type n_constrained_dofs () const
 
dof_id_type n_local_constrained_dofs () const
 
dof_id_type n_local_dofs () const
 
unsigned int add_variable (std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
unsigned int add_variable (std::string_view var, const Order order=FIRST, const FEFamily=LAGRANGE, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
unsigned int add_variables (const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
unsigned int add_variables (const std::vector< std::string > &vars, const Order order=FIRST, const FEFamily=LAGRANGE, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
const Variablevariable (unsigned int var) const
 Return a constant reference to Variable var. More...
 
const VariableGroupvariable_group (unsigned int vg) const
 Return a constant reference to VariableGroup vg. More...
 
bool has_variable (std::string_view var) const
 
const std::string & variable_name (const unsigned int i) const
 
unsigned int variable_number (std::string_view var) const
 
void get_all_variable_numbers (std::vector< unsigned int > &all_variable_numbers) const
 Fills all_variable_numbers with all the variable numbers for the variables that have been added to this system. More...
 
unsigned int variable_scalar_number (std::string_view var, unsigned int component) const
 
unsigned int variable_scalar_number (unsigned int var_num, unsigned int component) const
 
const FETypevariable_type (const unsigned int i) const
 
const FETypevariable_type (std::string_view var) const
 
bool identify_variable_groups () const
 
void identify_variable_groups (const bool)
 Toggle automatic VariableGroup identification. More...
 
Real calculate_norm (const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type, std::set< unsigned int > *skip_dimensions=nullptr) const
 
Real calculate_norm (const NumericVector< Number > &v, const SystemNorm &norm, std::set< unsigned int > *skip_dimensions=nullptr) const
 
void read_header (Xdr &io, std::string_view version, const bool read_header=true, const bool read_additional_data=true, const bool read_legacy_format=false)
 Reads the basic data header for this System. More...
 
void read_legacy_data (Xdr &io, const bool read_additional_data=true)
 Reads additional data, namely vectors, for this System. More...
 
template<typename ValType >
void read_serialized_data (Xdr &io, const bool read_additional_data=true)
 Reads additional data, namely vectors, for this System. More...
 
void read_serialized_data (Xdr &io, const bool read_additional_data=true)
 Non-templated version for backward compatibility. More...
 
template<typename InValType >
std::size_t read_serialized_vectors (Xdr &io, const std::vector< NumericVector< Number > *> &vectors) const
 Read a number of identically distributed vectors. More...
 
std::size_t read_serialized_vectors (Xdr &io, const std::vector< NumericVector< Number > *> &vectors) const
 Non-templated version for backward compatibility. More...
 
template<typename InValType >
void read_parallel_data (Xdr &io, const bool read_additional_data)
 Reads additional data, namely vectors, for this System. More...
 
void read_parallel_data (Xdr &io, const bool read_additional_data)
 Non-templated version for backward compatibility. More...
 
void write_header (Xdr &io, std::string_view version, const bool write_additional_data) const
 Writes the basic data header for this System. More...
 
void write_serialized_data (Xdr &io, const bool write_additional_data=true) const
 Writes additional data, namely vectors, for this System. More...
 
std::size_t write_serialized_vectors (Xdr &io, const std::vector< const NumericVector< Number > *> &vectors) const
 Serialize & write a number of identically distributed vectors. More...
 
void write_parallel_data (Xdr &io, const bool write_additional_data) const
 Writes additional data, namely vectors, for this System. More...
 
std::string get_info () const
 
void attach_init_function (void fptr(EquationSystems &es, const std::string &name))
 Register a user function to use in initializing the system. More...
 
void attach_init_object (Initialization &init)
 Register a user class to use to initialize the system. More...
 
void attach_assemble_function (void fptr(EquationSystems &es, const std::string &name))
 Register a user function to use in assembling the system matrix and RHS. More...
 
void attach_assemble_object (Assembly &assemble)
 Register a user object to use in assembling the system matrix and RHS. More...
 
void attach_constraint_function (void fptr(EquationSystems &es, const std::string &name))
 Register a user function for imposing constraints. More...
 
void attach_constraint_object (Constraint &constrain)
 Register a user object for imposing constraints. More...
 
bool has_constraint_object () const
 
Constraintget_constraint_object ()
 Return the user object for imposing constraints. More...
 
void attach_QOI_function (void fptr(EquationSystems &es, const std::string &name, const QoISet &qoi_indices))
 Register a user function for evaluating the quantities of interest, whose values should be placed in System::qoi. More...
 
void attach_QOI_object (QOI &qoi)
 Register a user object for evaluating the quantities of interest, whose values should be placed in System::qoi. More...
 
void attach_QOI_derivative (void fptr(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints))
 Register a user function for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs. More...
 
void attach_QOI_derivative_object (QOIDerivative &qoi_derivative)
 Register a user object for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs. More...
 
virtual void user_initialization ()
 Calls user's attached initialization function, or is overridden by the user in derived classes. More...
 
virtual void user_assembly ()
 Calls user's attached assembly function, or is overridden by the user in derived classes. More...
 
virtual void user_constrain ()
 Calls user's attached constraint function, or is overridden by the user in derived classes. More...
 
virtual void user_QOI (const QoISet &qoi_indices)
 Calls user's attached quantity of interest function, or is overridden by the user in derived classes. More...
 
virtual void user_QOI_derivative (const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true)
 Calls user's attached quantity of interest derivative function, or is overridden by the user in derived classes. More...
 
virtual void restrict_vectors ()
 Restrict vectors after the mesh has coarsened. More...
 
virtual void prolong_vectors ()
 Prolong vectors after the mesh has refined. More...
 
Number current_solution (const dof_id_type global_dof_number) const
 
unsigned int n_qois () const
 Number of currently active quantities of interest. More...
 
void init_qois (unsigned int n_qois)
 Accessors for qoi and qoi_error_estimates vectors. More...
 
void set_qoi (unsigned int qoi_index, Number qoi_value)
 
void set_qoi (std::vector< Number > new_qoi)
 
Number get_qoi_value (unsigned int qoi_index) const
 
std::vector< Numberget_qoi_values () const
 Returns a copy of qoi, not a reference. More...
 
void set_qoi_error_estimate (unsigned int qoi_index, Number qoi_error_estimate)
 
Number get_qoi_error_estimate_value (unsigned int qoi_index) const
 
Number point_value (unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
 
Number point_value (unsigned int var, const Point &p, const Elem &e, const NumericVector< Number > *sol=nullptr) const
 
Number point_value (unsigned int var, const Point &p, const Elem *e) const
 Calls the version of point_value() which takes a reference. More...
 
Number point_value (unsigned int var, const Point &p, const NumericVector< Number > *sol) const
 Calls the parallel version of point_value(). More...
 
Gradient point_gradient (unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
 
Gradient point_gradient (unsigned int var, const Point &p, const Elem &e, const NumericVector< Number > *sol=nullptr) const
 
Gradient point_gradient (unsigned int var, const Point &p, const Elem *e) const
 Calls the version of point_gradient() which takes a reference. More...
 
Gradient point_gradient (unsigned int var, const Point &p, const NumericVector< Number > *sol) const
 Calls the parallel version of point_gradient(). More...
 
Tensor point_hessian (unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
 
Tensor point_hessian (unsigned int var, const Point &p, const Elem &e, const NumericVector< Number > *sol=nullptr) const
 
Tensor point_hessian (unsigned int var, const Point &p, const Elem *e) const
 Calls the version of point_hessian() which takes a reference. More...
 
Tensor point_hessian (unsigned int var, const Point &p, const NumericVector< Number > *sol) const
 Calls the parallel version of point_hessian(). More...
 
void local_dof_indices (const unsigned int var, std::set< dof_id_type > &var_indices) const
 Fills the std::set with the degrees of freedom on the local processor corresponding the the variable number passed in. More...
 
void zero_variable (NumericVector< Number > &v, unsigned int var_num) const
 Zeroes all dofs in v that correspond to variable number var_num. More...
 
bool get_project_with_constraints ()
 Setter and getter functions for project_with_constraints boolean. More...
 
void set_project_with_constraints (bool _project_with_constraints)
 
bool & hide_output ()
 
void projection_matrix (SparseMatrix< Number > &proj_mat) const
 This method creates a projection matrix which corresponds to the operation of project_vector between old and new solution spaces. More...
 
SparseMatrix< Number > & add_matrix (std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
 Adds the additional matrix mat_name to this system. More...
 
template<template< typename > class>
SparseMatrix< Number > & add_matrix (std::string_view mat_name, ParallelType=PARALLEL)
 Adds the additional matrix mat_name to this system. More...
 
void remove_matrix (std::string_view mat_name)
 Removes the additional matrix mat_name from this system. More...
 
bool have_matrix (std::string_view mat_name) const
 
const SparseMatrix< Number > * request_matrix (std::string_view mat_name) const
 
SparseMatrix< Number > * request_matrix (std::string_view mat_name)
 
const SparseMatrix< Number > & get_matrix (std::string_view mat_name) const
 
SparseMatrix< Number > & get_matrix (std::string_view mat_name)
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
void initialize_parameters (const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
 Initialize the parameter ranges and set current_parameters. More...
 
void initialize_parameters (const RBParametrized &rb_parametrized)
 Initialize the parameter ranges and set current_parameters. More...
 
unsigned int get_n_params () const
 Get the number of parameters. More...
 
unsigned int get_n_continuous_params () const
 Get the number of continuous parameters. More...
 
unsigned int get_n_discrete_params () const
 Get the number of discrete parameters. More...
 
std::set< std::string > get_parameter_names () const
 Get a set that stores the parameter names. More...
 
const RBParametersget_parameters () const
 Get the current parameters. More...
 
bool set_parameters (const RBParameters &params)
 Set the current parameters to params The parameters are checked for validity; an error is thrown if the number of parameters or samples is different than expected. More...
 
const RBParametersget_parameters_min () const
 Get an RBParameters object that specifies the minimum allowable value for each parameter. More...
 
const RBParametersget_parameters_max () const
 Get an RBParameters object that specifies the maximum allowable value for each parameter. More...
 
Real get_parameter_min (const std::string &param_name) const
 Get minimum allowable value of parameter param_name. More...
 
Real get_parameter_max (const std::string &param_name) const
 Get maximum allowable value of parameter param_name. More...
 
void print_parameters () const
 Print the current parameters. More...
 
void write_parameter_data_to_files (const std::string &continuous_param_file_name, const std::string &discrete_param_file_name, const bool write_binary_data)
 Write out the parameter ranges to files. More...
 
void read_parameter_data_from_files (const std::string &continuous_param_file_name, const std::string &discrete_param_file_name, const bool read_binary_data)
 Read in the parameter ranges from files. More...
 
bool is_discrete_parameter (const std::string &mu_name) const
 Is parameter mu_name discrete? More...
 
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values () const
 Get a const reference to the discrete parameter values. More...
 
void print_discrete_parameter_values () const
 Print out all the discrete parameter values. More...
 
Real get_delta_t () const
 Get/set delta_t, the time-step size. More...
 
void set_delta_t (const Real delta_t_in)
 
Real get_euler_theta () const
 Get/set euler_theta, parameter that determines the temporal discretization. More...
 
void set_euler_theta (const Real euler_theta_in)
 
unsigned int get_time_step () const
 Get/set the current time-step. More...
 
void set_time_step (const unsigned int k)
 
unsigned int get_n_time_steps () const
 Get/set the total number of time-steps. More...
 
void set_n_time_steps (const unsigned int K)
 
Real get_control (const unsigned int k) const
 Get/set the RHS control. More...
 
void set_control (const std::vector< Real > &control)
 
void process_temporal_parameters_file (const std::string &parameters_filename)
 Read in and initialize parameters from parameters_filename. More...
 
void pull_temporal_discretization_data (RBTemporalDiscretization &other)
 Pull the temporal discretization data from other. More...
 

Static Public Member Functions

static void print_info (std::ostream &out_stream=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static void print_info (std::ostream &out_stream=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static std::unique_ptr< DirichletBoundarybuild_zero_dirichlet_boundary_object ()
 It's helpful to be able to generate a DirichletBoundary that stores a ZeroFunction in order to impose Dirichlet boundary conditions. More...
 
static std::pair< std::size_t, std::size_t > generate_training_parameters_random (const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const int training_parameters_random_seed=-1, const bool serial_training_set=false)
 Static helper function for generating a randomized set of parameters. More...
 
static std::pair< std::size_t, std::size_t > generate_training_parameters_deterministic (const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const bool serial_training_set=false)
 Static helper function for generating a deterministic set of parameters. More...
 
static std::string get_info ()
 Gets a string containing the reference information. More...
 
static std::string get_info ()
 Gets a string containing the reference information. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void disable_print_counter_info ()
 
static void disable_print_counter_info ()
 
static Real get_closest_value (Real value, const std::vector< Real > &list_of_values)
 

Public Attributes

std::unique_ptr< SparseMatrix< Number > > L2_matrix
 The L2 matrix. More...
 
std::unique_ptr< SparseMatrix< Number > > non_dirichlet_L2_matrix
 The L2 matrix without Dirichlet conditions enforced. More...
 
std::vector< std::unique_ptr< SparseMatrix< Number > > > M_q_vector
 Vector storing the Q_m matrices from the mass operator. More...
 
std::vector< std::unique_ptr< SparseMatrix< Number > > > non_dirichlet_M_q_vector
 We sometimes also need a second set of M_q matrices that do not have the Dirichlet boundary conditions enforced. More...
 
std::vector< std::vector< Number > > truth_outputs_all_k
 The truth outputs for all time-levels from the most recent truth_solve. More...
 
bool nonzero_initialization
 Boolean flag to indicate whether we are using a non-zero initialization. More...
 
bool compute_truth_projection_error
 Boolean flag that indicates whether we will compute the projection error for the truth solution into the RB space (at every time level). More...
 
std::string init_filename
 The filename of the file containing the initial condition projected onto the truth mesh. More...
 
NumericVector< Number > * old_local_solution
 All the values I need to compute my contribution to the simulation at hand. More...
 
NumericVector< Number > * older_local_solution
 All the values I need to compute my contribution to the simulation at hand. More...
 
std::vector< Realtraining_error_bounds
 Vector storing the values of the error bound for each parameter in the training set — the parameter giving the largest error bound is chosen for the next snapshot in the Greedy basis training. More...
 
std::unique_ptr< LinearSolver< Number > > inner_product_solver
 We store an extra linear solver object which we can optionally use for solving all systems in which the system matrix is set to inner_product_matrix. More...
 
LinearSolver< Number > * extra_linear_solver
 Also, we store a pointer to an extra linear solver. More...
 
std::unique_ptr< SparseMatrix< Number > > inner_product_matrix
 The inner product matrix. More...
 
std::vector< Numbertruth_outputs
 Vector storing the truth output values from the most recent truth solve. More...
 
std::vector< std::vector< Number > > output_dual_innerprods
 The vector storing the dual norm inner product terms for each output. More...
 
std::vector< std::unique_ptr< NumericVector< Number > > > Fq_representor
 Vector storing the residual representors associated with the right-hand side. More...
 
std::vector< NumberFq_representor_innerprods
 Vectors storing the residual representor inner products to be used in computing the residuals online. More...
 
bool skip_residual_in_train_reduced_basis
 Boolean flag to indicate if we skip residual calculations in train_reduced_basis. More...
 
bool exit_on_repeated_greedy_parameters
 Boolean flag to indicate whether we exit the greedy if we select the same parameters twice in a row. More...
 
bool impose_internal_fluxes
 Boolean flag to indicate whether we impose "fluxes" (i.e. More...
 
bool skip_degenerate_sides
 In some cases meshes are intentionally created with degenerate sides as a way to represent, say, triangles using a hex-only mesh. More...
 
bool compute_RB_inner_product
 Boolean flag to indicate whether we compute the RB_inner_product_matrix. More...
 
bool store_non_dirichlet_operators
 Boolean flag to indicate whether we store a second copy of each affine operator and vector which does not have Dirichlet bcs enforced. More...
 
bool store_untransformed_basis
 Boolean flag to indicate whether we store a second copy of the basis without constraints or dof transformations applied to it. More...
 
bool use_empty_rb_solve_in_greedy
 A boolean flag to indicate whether or not we initialize the Greedy algorithm by performing rb_solves on the training set with an "empty" (i.e. More...
 
bool Fq_representor_innerprods_computed
 A boolean flag to indicate whether or not the Fq representor norms have already been computed — used to make sure that we don't recompute them unnecessarily. More...
 
SparseMatrix< Number > * matrix
 The system matrix. More...
 
bool zero_out_matrix_and_rhs
 By default, the system will zero out the matrix and the right hand side. More...
 
std::unique_ptr< LinearSolver< Number > > linear_solver
 This class handles all the details of interfacing with various linear algebra packages like PETSc or LASPACK. More...
 
NumericVector< Number > * rhs
 The system matrix. More...
 
bool assemble_before_solve
 Flag which tells the system to whether or not to call the user assembly function during each call to solve(). More...
 
bool use_fixed_solution
 A boolean to be set to true by systems using elem_fixed_solution, for optional use by e.g. More...
 
int extra_quadrature_order
 A member int that can be employed to indicate increased or reduced quadrature order. More...
 
std::unique_ptr< NumericVector< Number > > solution
 Data structure to hold solution values. More...
 
std::unique_ptr< NumericVector< Number > > current_local_solution
 All the values I need to compute my contribution to the simulation at hand. More...
 
Real time
 For time-dependent problems, this is the time t at the beginning of the current timestep. More...
 
bool verbose_mode
 Public boolean to toggle verbose mode. More...
 

Protected Types

typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 
typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 

Protected Member Functions

virtual void allocate_data_structures () override
 Helper function that actually allocates all the data structures required by this class. More...
 
virtual void assemble_affine_expansion (bool skip_matrix_assembly, bool skip_vector_assembly) override
 Override assemble_affine_expansion to also initialize RB_ic_proj_rhs_all_N, if necessary. More...
 
virtual void initialize_truth ()
 This function imposes a truth initial condition, defaults to zero initial condition if the flag nonzero_initialization is true. More...
 
virtual SparseMatrix< Number > & get_matrix_for_output_dual_solves () override
 Override to return the L2 product matrix for output dual norm solves for transient state problems. More...
 
void add_IC_to_RB_space ()
 Initialize RB space by adding the truth initial condition as the first RB basis function. More...
 
virtual void enrich_RB_space () override
 Add a new basis functions to the RB space. More...
 
virtual void update_system () override
 Update the system after enriching the RB space. More...
 
virtual void update_RB_system_matrices () override
 Compute the reduced basis matrices for the current basis. More...
 
virtual void update_residual_terms (bool compute_inner_products) override
 Compute the terms that are combined ‘online’ to determine the dual norm of the residual. More...
 
Number set_error_temporal_data ()
 Set column k (i.e. More...
 
virtual void re_update () override
 Re-update the local values when the mesh has changed. More...
 
virtual std::unique_ptr< DGFEMContextbuild_context ()
 Builds a DGFEMContext object with enough information to do evaluations on each element. More...
 
void update_greedy_param_list ()
 Update the list of Greedily chosen parameters with current_parameters. More...
 
void add_scaled_matrix_and_vector (Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
 This function loops over the mesh and applies the specified interior and/or boundary assembly routines, then adds the scaled result to input_matrix and/or input_vector. More...
 
virtual void post_process_elem_matrix_and_vector (DGFEMContext &)
 This function is called from add_scaled_matrix_and_vector() before each element matrix and vector are assembled into their global counterparts. More...
 
virtual void post_process_truth_solution ()
 Similarly, provide an opportunity to post-process the truth solution after the solve is complete. More...
 
virtual void set_context_solution_vec (NumericVector< Number > &vec)
 Set current_local_solution = vec so that we can access vec from FEMContext during assembly. More...
 
virtual void assemble_all_affine_vectors ()
 Assemble and store the affine RHS vectors. More...
 
virtual void assemble_all_output_vectors ()
 Assemble and store the output vectors. More...
 
virtual void compute_output_dual_innerprods ()
 Compute and store the dual norm of each output functional. More...
 
virtual void compute_Fq_representor_innerprods (bool compute_inner_products=true)
 Compute the terms that are combined ‘online’ to determine the dual norm of the residual. More...
 
virtual Real get_RB_error_bound ()
 
virtual void init_context (FEMContext &)
 Initialize the FEMContext prior to performing an element loop. More...
 
bool get_convergence_assertion_flag () const
 Getter for the flag determining if convergence should be checked after each solve. More...
 
void check_convergence (LinearSolver< Number > &input_solver)
 Check if the linear solver reports convergence. More...
 
unsigned int get_current_training_parameter_index () const
 Get/set the current training parameter index. More...
 
void set_current_training_parameter_index (unsigned int index)
 
const std::vector< Number > & get_evaluated_thetas (unsigned int training_parameter_index) const
 Return the evaluated theta functions at the given training parameter index. More...
 
void preevaluate_thetas ()
 
void reset_preevaluate_thetas_completed ()
 Reset the _preevaluate_thetas_completed flag to false. More...
 
virtual void init_data ()
 Initializes the member data fields associated with the system, so that, e.g., assemble() may be used. More...
 
RBParameters get_params_from_training_set (unsigned int global_index)
 Return the RBParameters in index global_index of the global training set. More...
 
void set_params_from_training_set (unsigned int global_index)
 Set parameters to the RBParameters stored in index global_index of the global training set. More...
 
virtual void set_params_from_training_set_and_broadcast (unsigned int global_index)
 Load the specified training parameter and then broadcast to all processors. More...
 
virtual void add_matrices () override
 Adds the system matrix. More...
 
void project_vector (NumericVector< Number > &, int is_adjoint=-1) const
 Projects the vector defined on the old mesh onto the new mesh. More...
 
void project_vector (const NumericVector< Number > &, NumericVector< Number > &, int is_adjoint=-1) const
 Projects the vector defined on the old mesh onto the new mesh. More...
 
virtual void init_matrices ()
 Initializes the matrices associated with this system. More...
 
bool can_add_matrices () const
 
void solve_for_unconstrained_dofs (NumericVector< Number > &, int is_adjoint=-1) const
 
void increment_constructor_count (const std::string &name) noexcept
 Increments the construction counter. More...
 
void increment_constructor_count (const std::string &name) noexcept
 Increments the construction counter. More...
 
void increment_destructor_count (const std::string &name) noexcept
 Increments the destruction counter. More...
 
void increment_destructor_count (const std::string &name) noexcept
 Increments the destruction counter. More...
 

Static Protected Member Functions

static void get_global_max_error_pair (const Parallel::Communicator &communicator, std::pair< numeric_index_type, Real > &error_pair)
 Static function to return the error pair (index,error) that is corresponds to the largest error on all processors. More...
 

Protected Attributes

Real POD_tol
 If positive, this tolerance determines the number of POD modes we add to the space on a call to enrich_RB_space(). More...
 
int max_truth_solves
 Maximum number of truth solves in the POD-Greedy. More...
 
ElemAssemblyL2_assembly
 Function pointer for assembling the L2 matrix. More...
 
DenseVector< NumberRB_ic_proj_rhs_all_N
 The vector that stores the right-hand side for the initial condition projections. More...
 
unsigned int Nmax
 Maximum number of reduced basis functions we are willing to use. More...
 
unsigned int delta_N
 The number of basis functions that we add at each greedy step. More...
 
bool output_dual_innerprods_computed
 A boolean flag to indicate whether or not the output dual norms have already been computed — used to make sure that we don't recompute them unnecessarily. More...
 
bool assert_convergence
 A boolean flag to indicate whether to check for proper convergence after each solve. More...
 
bool quiet_mode
 Flag to indicate whether we print out extra information during the Offline stage. More...
 
bool serial_training_set
 This boolean flag indicates whether or not the training set should be the same on all processors. More...
 
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
 We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary memory allocation/deallocation). More...
 
unsigned int _n_linear_iterations
 The number of linear iterations required to solve the linear system Ax=b. More...
 
Real _final_linear_residual
 The final residual for the linear system Ax=b. More...
 
ShellMatrix< Number > * _shell_matrix
 User supplies shell matrix or nullptr if no shell matrix is used. More...
 
const SystemSubset_subset
 The current subset on which to solve (or nullptr if none). More...
 
SubsetSolveMode _subset_solve_mode
 If restrict-solve-to-subset mode is active, this member decides what happens with the dofs outside the subset. More...
 
const Parallel::Communicator_communicator
 

Static Protected Attributes

static Counts _counts
 Actually holds the data. More...
 
static Counts _counts
 Actually holds the data. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 

Private Attributes

std::vector< std::unique_ptr< NumericVector< Number > > > temporal_data
 Dense matrix to store the data that we use for the temporal POD. More...
 

Detailed Description

This class is part of the rbOOmit framework.

TransientRBConstruction extends RBConstruction to add functionality relevant in the time-dependent case.

We can handle time controls on the RHS as h(t)*f(x, \( \mu \)). See Martin Grepl's thesis for more details.

Author
David J. Knezevic
Date
2009

Definition at line 48 of file transient_rb_construction.h.

Member Typedef Documentation

◆ const_matrices_iterator

typedef std::map<std::string, std::unique_ptr<SparseMatrix<Number> >, std::less<> >::const_iterator libMesh::System::const_matrices_iterator
inherited

Definition at line 1810 of file system.h.

◆ const_vectors_iterator

typedef std::map<std::string, std::unique_ptr<NumericVector<Number> >, std::less<> >::const_iterator libMesh::System::const_vectors_iterator
inherited

Definition at line 767 of file system.h.

◆ Counts [1/2]

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 119 of file reference_counter.h.

◆ Counts [2/2]

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 119 of file reference_counter.h.

◆ GradientFunctionPointer

typedef Gradient(* libMesh::System::GradientFunctionPointer) (const Point &p, const Parameters &parameters, const std::string &sys_name, const std::string &unknown_name)
inherited

Definition at line 542 of file system.h.

◆ matrices_iterator

typedef std::map<std::string, std::unique_ptr<SparseMatrix<Number> >, std::less<> >::iterator libMesh::System::matrices_iterator
inherited

Matrix iterator typedefs.

Definition at line 1809 of file system.h.

◆ Parent

The type of the parent.

Definition at line 79 of file transient_rb_construction.h.

◆ sys_type

The type of system.

Definition at line 74 of file transient_rb_construction.h.

◆ ValueFunctionPointer

typedef Number(* libMesh::System::ValueFunctionPointer) (const Point &p, const Parameters &Parameters, const std::string &sys_name, const std::string &unknown_name)
inherited

Projects arbitrary functions onto the current solution.

The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Definition at line 538 of file system.h.

◆ vectors_iterator

typedef std::map<std::string, std::unique_ptr<NumericVector<Number> >, std::less<> >::iterator libMesh::System::vectors_iterator
inherited

Vector iterator typedefs.

Definition at line 766 of file system.h.

Constructor & Destructor Documentation

◆ TransientRBConstruction() [1/3]

TransientRBConstruction::TransientRBConstruction ( EquationSystems es,
const std::string &  name,
const unsigned int  number 
)

Constructor.

Optionally initializes required data structures.

Definition at line 61 of file transient_rb_construction.C.

References libMesh::RBConstruction::compute_RB_inner_product, and libMesh::RBConstruction::exit_on_repeated_greedy_parameters.

64  : Parent(es, name_in, number_in),
69  init_filename(""),
70  POD_tol(-1.),
71  max_truth_solves(-1),
72  L2_assembly(nullptr)
73 {
74  // Indicate that we need to compute the RB
75  // inner product matrix in this case
77 
78  // We should not necessarily exit the greedy due to repeated parameters in
79  // the transient case
81 }
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
int max_truth_solves
Maximum number of truth solves in the POD-Greedy.
bool compute_RB_inner_product
Boolean flag to indicate whether we compute the RB_inner_product_matrix.
TransientSystem< RBConstruction > Parent
The type of the parent.
Real POD_tol
If positive, this tolerance determines the number of POD modes we add to the space on a call to enric...
std::string init_filename
The filename of the file containing the initial condition projected onto the truth mesh...
static std::unique_ptr< SparseMatrix< Number > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package(), const MatrixBuildType matrix_build_type=MatrixBuildType::AUTOMATIC)
Builds a SparseMatrix<T> using the linear solver package specified by solver_package.
std::unique_ptr< SparseMatrix< Number > > non_dirichlet_L2_matrix
The L2 matrix without Dirichlet conditions enforced.
bool nonzero_initialization
Boolean flag to indicate whether we are using a non-zero initialization.
ElemAssembly * L2_assembly
Function pointer for assembling the L2 matrix.
bool compute_truth_projection_error
Boolean flag that indicates whether we will compute the projection error for the truth solution into ...
bool exit_on_repeated_greedy_parameters
Boolean flag to indicate whether we exit the greedy if we select the same parameters twice in a row...

◆ TransientRBConstruction() [2/3]

libMesh::TransientRBConstruction::TransientRBConstruction ( TransientRBConstruction &&  )
default

Special functions.

  • This class has the same restrictions/defaults as its base class.
  • Destructor is defaulted out-of-line

◆ TransientRBConstruction() [3/3]

libMesh::TransientRBConstruction::TransientRBConstruction ( const TransientRBConstruction )
delete

◆ ~TransientRBConstruction()

TransientRBConstruction::~TransientRBConstruction ( )
virtualdefault

Member Function Documentation

◆ activate()

void libMesh::System::activate ( )
inlineinherited

Activates the system.

Only active systems are solved.

Definition at line 2317 of file system.h.

References libMesh::System::_active.

2318 {
2319  _active = true;
2320 }
bool _active
Flag stating if the system is active or not.
Definition: system.h:2156

◆ active()

bool libMesh::System::active ( ) const
inlineinherited
Returns
true if the system is active, false otherwise. An active system will be solved.

Definition at line 2309 of file system.h.

References libMesh::System::_active.

2310 {
2311  return _active;
2312 }
bool _active
Flag stating if the system is active or not.
Definition: system.h:2156

◆ add_adjoint_rhs()

NumericVector< Number > & libMesh::System::add_adjoint_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's adjoint rhs vectors, by default the one corresponding to the first qoi. Creates the vector if it doesn't already exist.

Definition at line 1245 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ExplicitSystem::assemble_qoi_derivative(), and libMesh::FEMSystem::assemble_qoi_derivative().

1246 {
1247  std::ostringstream adjoint_rhs_name;
1248  adjoint_rhs_name << "adjoint_rhs" << i;
1249 
1250  return this->add_vector(adjoint_rhs_name.str(), false);
1251 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ add_adjoint_solution()

NumericVector< Number > & libMesh::System::add_adjoint_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's adjoint solution vectors, by default the one corresponding to the first qoi. Creates the vector if it doesn't already exist.

Definition at line 1181 of file system.C.

References libMesh::System::add_vector(), and libMesh::System::set_vector_as_adjoint().

Referenced by libMesh::ImplicitSystem::adjoint_solve().

1182 {
1183  std::ostringstream adjoint_name;
1184  adjoint_name << "adjoint_solution" << i;
1185 
1186  NumericVector<Number> & returnval = this->add_vector(adjoint_name.str());
1187  this->set_vector_as_adjoint(adjoint_name.str(), i);
1188  return returnval;
1189 }
void set_vector_as_adjoint(const std::string &vec_name, int qoi_num)
Allows one to set the QoI index controlling whether the vector identified by vec_name represents a so...
Definition: system.C:1107
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751
template class LIBMESH_EXPORT NumericVector< Number >

◆ add_IC_to_RB_space()

void TransientRBConstruction::add_IC_to_RB_space ( )
protected

Initialize RB space by adding the truth initial condition as the first RB basis function.

Definition at line 725 of file transient_rb_construction.C.

References libMesh::RBEvaluation::basis_functions, libMesh::ParallelObject::comm(), libMesh::NumericVector< T >::dot(), libMesh::RBEvaluation::get_basis_function(), libMesh::RBConstruction::get_delta_N(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::NumericVector< T >::init(), initialize_truth(), libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::libmesh_real(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), nonzero_initialization, libMesh::PARALLEL, libMesh::Real, libMesh::NumericVector< T >::scale(), set_delta_N(), libMesh::System::solution, std::sqrt(), update_system(), and libMesh::SparseMatrix< T >::vector_mult().

726 {
727  LOG_SCOPE("add_IC_to_RB_space()", "TransientRBConstruction");
728 
729  libmesh_error_msg_if(get_rb_evaluation().get_n_basis_functions() > 0,
730  "Error: Should not call TransientRBConstruction::add_IC_to_RB_space() "
731  "on a system that already contains basis functions.");
732 
733  libmesh_error_msg_if(!nonzero_initialization,
734  "Error: Should not call TransientRBConstruction::add_IC_to_RB_space() "
735  "when nonzero_initialization==false.");
736 
738 
739  // load the new basis function into the basis_functions vector.
741  NumericVector<Number> & current_bf = get_rb_evaluation().get_basis_function(get_rb_evaluation().get_n_basis_functions()-1);
742  current_bf.init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
743  current_bf = *solution;
744 
745  // We can just set the norm to 1.
747 
748  Real current_bf_norm = libmesh_real(std::sqrt( current_bf.dot(*inner_product_storage_vector) ));
749  current_bf.scale(1./current_bf_norm);
750 
751  unsigned int saved_delta_N = get_delta_N();
752  set_delta_N(1);
753  update_system();
754  set_delta_N(saved_delta_N);
755 }
T libmesh_real(T a)
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
std::vector< std::unique_ptr< NumericVector< Number > > > basis_functions
The libMesh vectors storing the finite element coefficients of the RB basis functions.
virtual void initialize_truth()
This function imposes a truth initial condition, defaults to zero initial condition if the flag nonze...
const Parallel::Communicator & comm() const
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
dof_id_type n_local_dofs() const
Definition: system.C:150
virtual void init(const numeric_index_type n, const numeric_index_type n_local, const bool fast=false, const ParallelType ptype=AUTOMATIC)=0
Change the dimension of the vector to n.
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
NumericVector< Number > & get_basis_function(unsigned int i)
Get a reference to the i^th basis function.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
bool nonzero_initialization
Boolean flag to indicate whether we are using a non-zero initialization.
unsigned int get_delta_N() const
Get delta_N, the number of basis functions we add to the RB space per iteration of the greedy algorit...
static std::unique_ptr< NumericVector< Number > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
void set_delta_N(const unsigned int new_delta_N)
Set delta_N, the number of basis functions we add to the RB space from each POD.
template class LIBMESH_EXPORT NumericVector< Number >
virtual void update_system() override
Update the system after enriching the RB space.

◆ add_matrices()

void libMesh::ImplicitSystem::add_matrices ( )
overrideprotectedvirtualinherited

Adds the system matrix.

Reimplemented from libMesh::System.

Definition at line 86 of file implicit_system.C.

References libMesh::System::add_matrices(), libMesh::System::add_matrix(), libMesh::libmesh_assert(), libMesh::ImplicitSystem::matrix, and libMesh::System::n_matrices().

87 {
89 
90  // Possible that we cleared the _matrices but
91  // forgot to update the matrix pointer?
92  if (this->n_matrices() == 0)
93  matrix = nullptr;
94 
95  // Only need to add the matrix if it isn't there
96  // already!
97  if (matrix == nullptr)
98  matrix = &(this->add_matrix ("System Matrix"));
99 
101 }
virtual void add_matrices()
Insertion point for adding matrices in derived classes before init_matrices() is called.
Definition: system.h:1903
libmesh_assert(ctx)
unsigned int n_matrices() const
Definition: system.h:2594
SparseMatrix< Number > * matrix
The system matrix.
SparseMatrix< Number > & add_matrix(std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
Adds the additional matrix mat_name to this system.
Definition: system.C:985

◆ add_matrix() [1/2]

SparseMatrix< Number > & libMesh::System::add_matrix ( std::string_view  mat_name,
ParallelType  type = PARALLEL,
MatrixBuildType  mat_build_type = MatrixBuildType::AUTOMATIC 
)
inherited

Adds the additional matrix mat_name to this system.

Only allowed prior to assemble(). All additional matrices have the same sparsity pattern as the matrix used during solution. When not System but the user wants to initialize the mayor matrix, then all the additional matrices, if existent, have to be initialized by the user, too.

This non-template method will add a derived matrix type corresponding to the solver package. If the user wishes to specify the matrix type to add, use the templated add_matrix method instead

Parameters
mat_nameA name for the matrix
typeThe serial/parallel/ghosted type of the matrix
mat_build_typeThe matrix type to build

Definition at line 985 of file system.C.

References libMesh::System::_matrices, libMesh::System::_matrix_types, libMesh::ParallelObject::comm(), libMesh::default_solver_package(), libMesh::System::late_matrix_init(), and libMesh::libmesh_assert().

Referenced by libMesh::ImplicitSystem::add_matrices(), libMesh::EigenSystem::add_matrices(), alternative_fe_assembly(), libMesh::EigenTimeSolver::init(), main(), and libMesh::NewmarkSystem::NewmarkSystem().

988 {
989  parallel_object_only();
990 
991  libmesh_assert(this->comm().verify(std::string(mat_name)));
992  libmesh_assert(this->comm().verify(int(type)));
993  libmesh_assert(this->comm().verify(int(mat_build_type)));
994 
995  // Return the matrix if it is already there.
996  auto it = this->_matrices.find(mat_name);
997  if (it != this->_matrices.end())
998  return *it->second;
999 
1000  // Otherwise build the matrix to return.
1001  auto pr = _matrices.emplace
1002  (mat_name,
1003  SparseMatrix<Number>::build(this->comm(),
1005  mat_build_type));
1006 
1007  _matrix_types.emplace(mat_name, type);
1008 
1009  SparseMatrix<Number> & mat = *(pr.first->second);
1010 
1011  // Initialize it first if we've already initialized the others.
1012  this->late_matrix_init(mat, type);
1013 
1014  return mat;
1015 }
const Parallel::Communicator & comm() const
static std::unique_ptr< SparseMatrix< Number > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package(), const MatrixBuildType matrix_build_type=MatrixBuildType::AUTOMATIC)
Builds a SparseMatrix<T> using the linear solver package specified by solver_package.
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181
SolverPackage default_solver_package()
Definition: libmesh.C:1050
libmesh_assert(ctx)
std::map< std::string, ParallelType, std::less<> > _matrix_types
Holds the types of the matrices.
Definition: system.h:2186
template class LIBMESH_EXPORT SparseMatrix< Number >
void late_matrix_init(SparseMatrix< Number > &mat, ParallelType type)
Helper function to keep DofMap forward declarable in system.h.
Definition: system.C:1019

◆ add_matrix() [2/2]

template<template< typename > class MatrixType>
SparseMatrix< Number > & libMesh::System::add_matrix ( std::string_view  mat_name,
ParallelType  type = PARALLEL 
)
inlineinherited

Adds the additional matrix mat_name to this system.

Only allowed prior to assemble(). All additional matrices have the same sparsity pattern as the matrix used during solution. When not System but the user wants to initialize the mayor matrix, then all the additional matrices, if existent, have to be initialized by the user, too.

This method will create add a derived matrix of type MatrixType<Number>. One can use the non-templated add_matrix method to add a matrix corresponding to the default solver package

Parameters
mat_nameA name for the matrix
typeThe serial/parallel/ghosted type of the matrix

Definition at line 2602 of file system.h.

References libMesh::System::_matrices, libMesh::System::_matrix_types, and libMesh::System::late_matrix_init().

2604 {
2605  // Return the matrix if it is already there.
2606  auto it = this->_matrices.find(mat_name);
2607  if (it != this->_matrices.end())
2608  return *it->second;
2609 
2610  // Otherwise build the matrix to return.
2611  auto pr = _matrices.emplace(mat_name, std::make_unique<MatrixType<Number>>(this->comm()));
2612  _matrix_types.emplace(mat_name, type);
2613 
2614  SparseMatrix<Number> & mat = *(pr.first->second);
2615 
2616  // Initialize it first if we've already initialized the others.
2617  this->late_matrix_init(mat, type);
2618 
2619  return mat;
2620 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181
std::map< std::string, ParallelType, std::less<> > _matrix_types
Holds the types of the matrices.
Definition: system.h:2186
template class LIBMESH_EXPORT SparseMatrix< Number >
void late_matrix_init(SparseMatrix< Number > &mat, ParallelType type)
Helper function to keep DofMap forward declarable in system.h.
Definition: system.C:1019

◆ add_scaled_Aq()

void libMesh::RBConstruction::add_scaled_Aq ( Number  scalar,
unsigned int  q_a,
SparseMatrix< Number > *  input_matrix,
bool  symmetrize 
)
inherited

Add the scaled q^th affine matrix to input_matrix.

If symmetrize==true, then we symmetrize Aq before adding it.

Definition at line 1033 of file rb_construction.C.

References libMesh::SparseMatrix< T >::add(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::SparseMatrix< T >::close(), libMesh::RBAssemblyExpansion::get_A_assembly(), libMesh::RBConstruction::get_Aq(), libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::RBConstruction::rb_assembly_expansion.

Referenced by libMesh::RBSCMConstruction::add_scaled_symm_Aq().

1037 {
1038  LOG_SCOPE("add_scaled_Aq()", "RBConstruction");
1039 
1040  libmesh_error_msg_if(q_a >= get_rb_theta_expansion().get_n_A_terms(),
1041  "Error: We must have q < Q_a in add_scaled_Aq.");
1042 
1043  if (!symmetrize)
1044  {
1045  input_matrix->add(scalar, *get_Aq(q_a));
1046  input_matrix->close();
1047  }
1048  else
1049  {
1052  input_matrix,
1053  nullptr,
1054  symmetrize);
1055  }
1056 }
SparseMatrix< Number > * get_Aq(unsigned int q)
Get a pointer to Aq.
virtual void add(const numeric_index_type i, const numeric_index_type j, const T value)=0
Add value to the element (i,j).
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
void add_scaled_matrix_and_vector(Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
This function loops over the mesh and applies the specified interior and/or boundary assembly routine...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
ElemAssembly & get_A_assembly(unsigned int q)
Return a reference to the specified A_assembly object.
RBAssemblyExpansion * rb_assembly_expansion
This member holds the (parameter independent) assembly functors that define the "affine expansion" of...

◆ add_scaled_mass_matrix()

void TransientRBConstruction::add_scaled_mass_matrix ( Number  scalar,
SparseMatrix< Number > *  input_matrix 
)

Add the scaled mass matrix (assembled for the current parameter) to input_matrix.

Definition at line 362 of file transient_rb_construction.C.

References libMesh::SparseMatrix< T >::add(), libMesh::TransientRBThetaExpansion::eval_M_theta(), get_M_q(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBParametrized::get_parameters(), and libMesh::RBConstruction::get_rb_theta_expansion().

Referenced by assemble_mass_matrix(), and truth_assembly().

363 {
364  const RBParameters & mu = get_parameters();
365 
366  TransientRBThetaExpansion & trans_theta_expansion =
367  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
368 
369  const unsigned int Q_m = trans_theta_expansion.get_n_M_terms();
370 
371  for (unsigned int q=0; q<Q_m; q++)
372  input_matrix->add(scalar * trans_theta_expansion.eval_M_theta(q,mu), *get_M_q(q));
373 }
SparseMatrix< Number > * get_M_q(unsigned int q)
Get a pointer to M_q.
virtual void add(const numeric_index_type i, const numeric_index_type j, const T value)=0
Add value to the element (i,j).
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
const RBParameters & get_parameters() const
Get the current parameters.

◆ add_scaled_matrix_and_vector()

void libMesh::RBConstruction::add_scaled_matrix_and_vector ( Number  scalar,
ElemAssembly elem_assembly,
SparseMatrix< Number > *  input_matrix,
NumericVector< Number > *  input_vector,
bool  symmetrize = false,
bool  apply_dof_constraints = true 
)
protectedinherited

This function loops over the mesh and applies the specified interior and/or boundary assembly routines, then adds the scaled result to input_matrix and/or input_vector.

If symmetrize==true then we assemble the symmetric part of the matrix, 0.5*(A + A^T)

Definition at line 618 of file rb_construction.C.

References libMesh::DofMap::_dof_coupling, libMesh::SparseMatrix< T >::add_matrix(), libMesh::NumericVector< T >::add_vector(), libMesh::FEAbstract::attach_quadrature_rule(), libMesh::ElemAssembly::boundary_assembly(), libMesh::RBConstruction::build_context(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::ParallelObject::comm(), libMesh::DofMap::constrain_element_matrix_and_vector(), libMesh::FEType::default_quadrature_rule(), libMesh::DGFEMContext::dg_terms_are_active(), libMesh::DenseMatrix< T >::el(), libMesh::FEMContext::elem_fe_reinit(), libMesh::DiffContext::get_dof_indices(), libMesh::System::get_dof_map(), libMesh::FEMContext::get_elem(), libMesh::DGFEMContext::get_elem_elem_jacobian(), libMesh::DiffContext::get_elem_jacobian(), libMesh::DGFEMContext::get_elem_neighbor_jacobian(), libMesh::DiffContext::get_elem_residual(), libMesh::FEMContext::get_element_fe(), libMesh::FEAbstract::get_fe_type(), libMesh::System::get_mesh(), libMesh::DGFEMContext::get_neighbor_dof_indices(), libMesh::DGFEMContext::get_neighbor_elem_jacobian(), libMesh::DGFEMContext::get_neighbor_neighbor_jacobian(), libMesh::ElemAssembly::get_nodal_values(), libMesh::FEMContext::get_side(), libMesh::DenseMatrix< T >::get_transpose(), libMesh::RBConstruction::impose_internal_fluxes, libMesh::RBConstruction::init_context(), libMesh::ElemAssembly::interior_assembly(), libMesh::Tri3Subdivision::is_ghost(), libMesh::DenseMatrixBase< T >::m(), TIMPI::Communicator::max(), mesh, libMesh::DenseMatrixBase< T >::n(), libMesh::Elem::n_sides(), libMesh::System::n_vars(), libMesh::Elem::neighbor_ptr(), libMesh::NODEELEM, libMesh::RBConstruction::post_process_elem_matrix_and_vector(), libMesh::FEMContext::pre_fe_reinit(), libMesh::DofObject::processor_id(), TIMPI::Communicator::rank(), libMesh::FEMContext::side, libMesh::DGFEMContext::side_fe_reinit(), libMesh::Elem::side_ptr(), libMesh::RBConstruction::skip_degenerate_sides, and libMesh::TRI3SUBDIVISION.

Referenced by libMesh::RBConstruction::add_scaled_Aq(), libMesh::RBConstruction::assemble_all_output_vectors(), libMesh::RBConstruction::assemble_Aq_matrix(), libMesh::RBConstruction::assemble_Fq_vector(), libMesh::RBConstruction::assemble_inner_product_matrix(), assemble_L2_matrix(), and assemble_Mq_matrix().

624 {
625  LOG_SCOPE("add_scaled_matrix_and_vector()", "RBConstruction");
626 
627  bool assemble_matrix = (input_matrix != nullptr);
628  bool assemble_vector = (input_vector != nullptr);
629 
630  if (!assemble_matrix && !assemble_vector)
631  return;
632 
633  const MeshBase & mesh = this->get_mesh();
634 
635  // First add any node-based terms (e.g. point loads)
636 
637  // Make a std::set of all the nodes that are in 1 or more
638  // nodesets. We only want to call get_nodal_values() once per Node
639  // per ElemAssembly object, regardless of how many nodesets it
640  // appears in.
641  std::set<dof_id_type> nodes_with_nodesets;
642  for (const auto & t : mesh.get_boundary_info().build_node_list())
643  nodes_with_nodesets.insert(std::get<0>(t));
644 
645  // It's possible for the node assembly loop below to throw an
646  // exception on one (or some subset) of the processors. In that
647  // case, we stop assembling on the processor(s) that threw and let
648  // the other processors finish assembly. Then we synchronize to
649  // check whether an exception was thrown on _any_ processor, and if
650  // so, re-throw it on _all_ processors.
651  int nodal_assembly_threw = 0;
652 
653  libmesh_try
654  {
655 
656  for (const auto & id : nodes_with_nodesets)
657  {
658  const Node & node = mesh.node_ref(id);
659 
660  // If node is on this processor, then all dofs on node are too
661  // so we can do the add below safely
662  if (node.processor_id() == this->comm().rank())
663  {
664  // Get the values to add to the rhs vector
665  std::vector<dof_id_type> nodal_dof_indices;
666  DenseMatrix<Number> nodal_matrix;
667  DenseVector<Number> nodal_rhs;
668  elem_assembly->get_nodal_values(nodal_dof_indices,
669  nodal_matrix,
670  nodal_rhs,
671  *this,
672  node);
673 
674  // Perform any required user-defined postprocessing on
675  // the matrix and rhs.
676  //
677  // TODO: We need to postprocess node matrices and vectors
678  // in some cases (e.g. when rotations are applied to
679  // nodes), but since we don't have a FEMContext at this
680  // point we would need to have a different interface
681  // taking the DenseMatrix, DenseVector, and probably the
682  // current node that we are on...
683  // this->post_process_elem_matrix_and_vector(nodal_matrix, nodal_rhs);
684 
685  if (!nodal_dof_indices.empty())
686  {
687  if (apply_dof_constraints)
688  {
689  // Apply constraints, e.g. Dirichlet and periodic constraints
691  nodal_matrix,
692  nodal_rhs,
693  nodal_dof_indices,
694  /*asymmetric_constraint_rows*/ false);
695  }
696 
697  // Scale and add to global matrix and/or vector
698  nodal_matrix *= scalar;
699  nodal_rhs *= scalar;
700 
701  if (assemble_vector)
702  input_vector->add_vector(nodal_rhs, nodal_dof_indices);
703 
704  if (assemble_matrix)
705  input_matrix->add_matrix(nodal_matrix, nodal_dof_indices);
706  }
707  }
708  }
709  } // libmesh_try
710  libmesh_catch(...)
711  {
712  nodal_assembly_threw = 1;
713  }
714 
715  // Check for exceptions on any procs and if there is one, re-throw
716  // it on all procs.
717  this->comm().max(nodal_assembly_threw);
718 
719  if (nodal_assembly_threw)
720  libmesh_error_msg("Error during assembly in RBConstruction::add_scaled_matrix_and_vector()");
721 
722  std::unique_ptr<DGFEMContext> c = this->build_context();
723  DGFEMContext & context = cast_ref<DGFEMContext &>(*c);
724 
725  this->init_context(context);
726 
727  // It's possible for the assembly loop below to throw an exception
728  // on one (or some subset) of the processors. This can happen when
729  // e.g. the mesh contains one or more elements with negative
730  // Jacobian. In that case, we stop assembling on the processor(s)
731  // that threw and let the other processors finish assembly. Then we
732  // synchronize to check whether an exception was thrown on _any_
733  // processor, and if so, re-throw it on _all_ processors. This way,
734  // we make it easier for callers to handle exceptions in parallel
735  // during assembly: they can simply assume that the code either
736  // throws on all procs or on no procs.
737  int assembly_threw = 0;
738 
739  libmesh_try
740  {
741 
742  for (const auto & elem : mesh.active_local_element_ptr_range())
743  {
744  const ElemType elemtype = elem->type();
745 
746  if(elemtype == NODEELEM)
747  {
748  // We assume that we do not perform any assembly directly on
749  // NodeElems, so we skip the assembly calls.
750 
751  // However, in a spline basis with Dirichlet constraints on
752  // spline nodes, a constrained matrix has to take those
753  // nodes into account.
754  if (!apply_dof_constraints)
755  continue;
756  }
757 
758  // Subdivision elements need special care:
759  // - skip ghost elements
760  // - init special quadrature rule
761  std::unique_ptr<QBase> qrule;
762  if (elemtype == TRI3SUBDIVISION)
763  {
764  const Tri3Subdivision * gh_elem = static_cast<const Tri3Subdivision *> (elem);
765  if (gh_elem->is_ghost())
766  continue ;
767  // A Gauss quadrature rule for numerical integration.
768  // For subdivision shell elements, a single Gauss point per
769  // element is sufficient, hence we use extraorder = 0.
770  const int extraorder = 0;
771  FEBase * elem_fe = nullptr;
772  context.get_element_fe( 0, elem_fe );
773 
774  qrule = elem_fe->get_fe_type().default_quadrature_rule (2, extraorder);
775 
776  // Tell the finite element object to use our quadrature rule.
777  elem_fe->attach_quadrature_rule (qrule.get());
778  }
779 
780  context.pre_fe_reinit(*this, elem);
781 
782  // Do nothing in case there are no dof_indices on the current element
783  if ( context.get_dof_indices().empty() )
784  continue;
785 
786  context.elem_fe_reinit();
787 
788  if (elemtype != NODEELEM)
789  {
790  elem_assembly->interior_assembly(context);
791 
792  const unsigned char n_sides = context.get_elem().n_sides();
793  for (context.side = 0; context.side != n_sides; ++context.side)
794  {
795  // May not need to apply fluxes on non-boundary elements
796  if ((context.get_elem().neighbor_ptr(context.get_side()) != nullptr) && !impose_internal_fluxes)
797  continue;
798 
799  // skip degenerate sides with zero area
800  if( (context.get_elem().side_ptr(context.get_side())->volume() <= 0.) && skip_degenerate_sides)
801  continue;
802 
803  context.side_fe_reinit();
804  elem_assembly->boundary_assembly(context);
805 
806  if (context.dg_terms_are_active())
807  {
808  input_matrix->add_matrix (context.get_elem_elem_jacobian(),
809  context.get_dof_indices(),
810  context.get_dof_indices());
811 
812  input_matrix->add_matrix (context.get_elem_neighbor_jacobian(),
813  context.get_dof_indices(),
814  context.get_neighbor_dof_indices());
815 
816  input_matrix->add_matrix (context.get_neighbor_elem_jacobian(),
817  context.get_neighbor_dof_indices(),
818  context.get_dof_indices());
819 
820  input_matrix->add_matrix (context.get_neighbor_neighbor_jacobian(),
821  context.get_neighbor_dof_indices(),
822  context.get_neighbor_dof_indices());
823  }
824  }
825  }
826 
827  // Do any required user post-processing before symmetrizing and/or applying
828  // constraints.
829  //
830  // We only do this if apply_dof_constraints is true because we want to be
831  // able to set apply_dof_constraints=false in order to obtain a matrix
832  // A with no dof constraints or dof transformations, as opposed to C^T A C,
833  // which includes constraints and/or dof transformations. Here C refers to
834  // the matrix that imposes dof constraints and transformations on the
835  // solution u.
836  //
837  // Matrices such as A are what we store in our "non_dirichlet" operators, and
838  // they are useful for computing terms such as (C u_i)^T A (C u_j) (e.g. see
839  // update_RB_system_matrices()), where C u is the result of a "truth_solve",
840  // which includes calls to both enforce_constraints_exactly() and
841  // post_process_truth_solution(). If we use C^T A C to compute these terms then
842  // we would "double apply" the matrix C, which can give incorrect results.
843  if (apply_dof_constraints)
845 
846  // Need to symmetrize before imposing
847  // periodic constraints
848  if (assemble_matrix && symmetrize)
849  {
850  DenseMatrix<Number> Ke_transpose;
851  context.get_elem_jacobian().get_transpose(Ke_transpose);
852  context.get_elem_jacobian() += Ke_transpose;
853  context.get_elem_jacobian() *= 0.5;
854  }
855 
856  // As discussed above, we can set apply_dof_constraints=false to
857  // get A instead of C^T A C
858  if (apply_dof_constraints)
859  {
860  // Apply constraints, e.g. Dirichlet and periodic constraints
862  (context.get_elem_jacobian(),
863  context.get_elem_residual(),
864  context.get_dof_indices(),
865  /*asymmetric_constraint_rows*/ false );
866  }
867 
868  // Scale and add to global matrix and/or vector
869  context.get_elem_jacobian() *= scalar;
870  context.get_elem_residual() *= scalar;
871 
872  if (assemble_matrix)
873  {
874 
875  CouplingMatrix * coupling_matrix = get_dof_map()._dof_coupling;
876  if (!coupling_matrix)
877  {
878  // If we haven't defined a _dof_coupling matrix then just add
879  // the whole matrix
880  input_matrix->add_matrix (context.get_elem_jacobian(),
881  context.get_dof_indices() );
882  }
883  else
884  {
885  // Otherwise we should only add the relevant submatrices
886  for (unsigned int var1=0; var1<n_vars(); var1++)
887  {
888  ConstCouplingRow ccr(var1, *coupling_matrix);
889  for (const auto & var2 : ccr)
890  {
891  unsigned int sub_m = context.get_elem_jacobian( var1, var2 ).m();
892  unsigned int sub_n = context.get_elem_jacobian( var1, var2 ).n();
893  DenseMatrix<Number> sub_jac(sub_m, sub_n);
894  for (unsigned int row=0; row<sub_m; row++)
895  for (unsigned int col=0; col<sub_n; col++)
896  {
897  sub_jac(row,col) = context.get_elem_jacobian( var1, var2 ).el(row,col);
898  }
899  input_matrix->add_matrix (sub_jac,
900  context.get_dof_indices(var1),
901  context.get_dof_indices(var2) );
902  }
903  }
904  }
905 
906  }
907 
908  if (assemble_vector)
909  input_vector->add_vector (context.get_elem_residual(),
910  context.get_dof_indices() );
911  } // end for (elem)
912 
913  } // libmesh_try
914  libmesh_catch(...)
915  {
916  assembly_threw = 1;
917  }
918 
919  // Note: regardless of whether any procs threw during assembly (and
920  // thus didn't finish assembling), we should not leave the matrix
921  // and vector in an inconsistent state, since it may be possible to
922  // recover from the exception. Therefore, we close them now. The
923  // assumption here is that the nature of the exception does not
924  // prevent the matrix and vector from still being assembled (albeit
925  // with incomplete data).
926  if (assemble_matrix)
927  input_matrix->close();
928  if (assemble_vector)
929  input_vector->close();
930 
931  // Check for exceptions on any procs and if there is one, re-throw
932  // it on all procs.
933  this->comm().max(assembly_threw);
934 
935  if (assembly_threw)
936  libmesh_error_msg("Error during assembly in RBConstruction::add_scaled_matrix_and_vector()");
937 }
ElemType
Defines an enum for geometric element types.
virtual void post_process_elem_matrix_and_vector(DGFEMContext &)
This function is called from add_scaled_matrix_and_vector() before each element matrix and vector are...
void constrain_element_matrix_and_vector(DenseMatrix< Number > &matrix, DenseVector< Number > &rhs, std::vector< dof_id_type > &elem_dofs, bool asymmetric_constraint_rows=true) const
Constrains the element matrix and vector.
Definition: dof_map.h:2254
virtual void add_vector(const T *v, const std::vector< numeric_index_type > &dof_indices)
Computes , where v is a pointer and each dof_indices[i] specifies where to add value v[i]...
MeshBase & mesh
processor_id_type rank() const
const Parallel::Communicator & comm() const
bool skip_degenerate_sides
In some cases meshes are intentionally created with degenerate sides as a way to represent, say, triangles using a hex-only mesh.
virtual std::unique_ptr< DGFEMContext > build_context()
Builds a DGFEMContext object with enough information to do evaluations on each element.
const MeshBase & get_mesh() const
Definition: system.h:2277
virtual void init_context(FEMContext &)
Initialize the FEMContext prior to performing an element loop.
bool impose_internal_fluxes
Boolean flag to indicate whether we impose "fluxes" (i.e.
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix.
CouplingMatrix * _dof_coupling
Degree of freedom coupling.
Definition: dof_map.h:1592
FEGenericBase< Real > FEBase
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
void max(const T &r, T &o, Request &req) const
unsigned int n_vars() const
Definition: system.h:2349
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ add_sensitivity_rhs()

NumericVector< Number > & libMesh::System::add_sensitivity_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's sensitivity rhs vectors, by default the one corresponding to the first parameter. Creates the vector if it doesn't already exist.

Definition at line 1275 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ImplicitSystem::assemble_residual_derivatives().

1276 {
1277  std::ostringstream sensitivity_rhs_name;
1278  sensitivity_rhs_name << "sensitivity_rhs" << i;
1279 
1280  return this->add_vector(sensitivity_rhs_name.str(), false);
1281 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ add_sensitivity_solution()

NumericVector< Number > & libMesh::System::add_sensitivity_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's solution sensitivity vectors, by default the one corresponding to the first parameter. Creates the vector if it doesn't already exist.

Definition at line 1130 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ImplicitSystem::sensitivity_solve().

1131 {
1132  std::ostringstream sensitivity_name;
1133  sensitivity_name << "sensitivity_solution" << i;
1134 
1135  return this->add_vector(sensitivity_name.str());
1136 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ add_variable() [1/2]

unsigned int libMesh::System::add_variable ( std::string_view  var,
const FEType type,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Returns
The index number for the new variable.

Definition at line 1305 of file system.C.

References libMesh::System::_variable_groups, libMesh::System::_variable_numbers, libMesh::System::_variables, libMesh::Variable::active_subdomains(), libMesh::System::add_variables(), libMesh::ParallelObject::comm(), libMesh::System::identify_variable_groups(), libMesh::Variable::implicitly_active(), libMesh::System::is_initialized(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_variable_groups(), libMesh::System::n_vars(), libMesh::System::variable(), libMesh::System::variable_name(), and libMesh::System::variable_type().

Referenced by libMesh::DifferentiableSystem::add_second_order_dot_vars(), libMesh::System::add_variable(), assemble_and_solve(), OverlappingTestBase::init(), SolidSystem::init_data(), CurlCurlSystem::init_data(), SimpleEIMConstruction::init_data(), HeatSystem::init_data(), SimpleRBConstruction::init_data(), main(), libMesh::ErrorVector::plot_error(), libMesh::System::read_header(), RationalMapTest< elem_type >::setUp(), SlitMeshRefinedSystemTest::setUp(), FETestBase< order, family, elem_type, 1 >::setUp(), WriteVecAndScalar::setupTests(), SystemsTest::simpleSetup(), MultiEvaluablePredTest::test(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), SystemsTest::testAssemblyWithDgFemContext(), DofMapTest::testBadElemFECombo(), EquationSystemsTest::testBadVarNames(), SystemsTest::testBlockRestrictedVarNDofs(), SystemsTest::testBoundaryProjectCube(), DofMapTest::testConstraintLoopDetection(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyElementVectorImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), SystemsTest::testDofCouplingWithVarGroups(), DofMapTest::testDofOwner(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), MeshAssignTest::testMeshMoveAssign(), PeriodicBCTest::testPeriodicBC(), EquationSystemsTest::testPostInitAddElem(), EquationSystemsTest::testPostInitAddRealSystem(), SystemsTest::testProjectCubeWithMeshFunction(), MeshInputTest::testProjectionRegression(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), InfFERadialTest::testRefinement(), EquationSystemsTest::testRefineThenReinitPreserveFlags(), EquationSystemsTest::testReinitWithNodeElem(), EquationSystemsTest::testRepartitionThenReinit(), EquationSystemsTest::testSelectivePRefine(), BoundaryInfoTest::testShellFaceConstraints(), MeshInputTest::testSingleElementImpl(), WriteVecAndScalar::testWriteExodus(), and WriteVecAndScalar::testWriteNemesis().

1308 {
1309  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1310 
1311  libmesh_assert(this->comm().verify(std::string(var)));
1312  libmesh_assert(this->comm().verify(type));
1313  libmesh_assert(this->comm().verify((active_subdomains == nullptr)));
1314 
1315  if (active_subdomains)
1316  libmesh_assert(this->comm().verify(active_subdomains->size()));
1317 
1318  // Make sure the variable isn't there already
1319  // or if it is, that it's the type we want
1320  for (auto v : make_range(this->n_vars()))
1321  if (this->variable_name(v) == var)
1322  {
1323  if (this->variable_type(v) == type)
1324  {
1325  // Check whether the existing variable's active subdomains also matches
1326  // the incoming variable's active subdomains. If they don't match, then
1327  // either it is an error by the user or the user is trying to change the
1328  // subdomain restriction after the variable has already been added, which
1329  // is not supported.
1330  const Variable & existing_var = this->variable(v);
1331 
1332  // Check whether active_subdomains is not provided/empty and the existing_var is implicitly_active()
1333  bool check1 = (!active_subdomains || active_subdomains->empty()) && existing_var.implicitly_active();
1334 
1335  // Check if the provided active_subdomains is equal to the existing_var's active_subdomains
1336  bool check2 = (active_subdomains && (*active_subdomains == existing_var.active_subdomains()));
1337 
1338  // If either of these checks passed, then we already have this variable
1339  if (check1 || check2)
1340  return _variables[v].number();
1341  }
1342 
1343  libmesh_error_msg("ERROR: incompatible variable " << var << " has already been added for this system!");
1344  }
1345 
1346  libmesh_assert(!this->is_initialized());
1347 
1348  if (this->n_variable_groups())
1349  {
1350  // Optimize for VariableGroups here - if the user is adding multiple
1351  // variables of the same FEType and subdomain restriction, catch
1352  // that here and add them as members of the same VariableGroup.
1353  //
1354  // start by setting this flag to whatever the user has requested
1355  // and then consider the conditions which should negate it.
1356  bool should_be_in_vg = this->identify_variable_groups();
1357 
1358  VariableGroup & vg(_variable_groups.back());
1359 
1360  // get a pointer to their subdomain restriction, if any.
1361  const std::set<subdomain_id_type> * const
1362  their_active_subdomains (vg.implicitly_active() ?
1363  nullptr : &vg.active_subdomains());
1364 
1365  // Different types?
1366  if (vg.type() != type)
1367  should_be_in_vg = false;
1368 
1369  // they are restricted, we aren't?
1370  if (their_active_subdomains &&
1371  (!active_subdomains || (active_subdomains && active_subdomains->empty())))
1372  should_be_in_vg = false;
1373 
1374  // they aren't restricted, we are?
1375  if (!their_active_subdomains && (active_subdomains && !active_subdomains->empty()))
1376  should_be_in_vg = false;
1377 
1378  if (their_active_subdomains && active_subdomains)
1379  // restricted to different sets?
1380  if (*their_active_subdomains != *active_subdomains)
1381  should_be_in_vg = false;
1382 
1383  // OK, after all that, append the variable to the vg if none of the conditions
1384  // were violated
1385  if (should_be_in_vg)
1386  {
1387  const unsigned int curr_n_vars = this->n_vars();
1388 
1389  std::string varstr(var);
1390 
1391  _variable_numbers[varstr] = curr_n_vars;
1392  vg.append (std::move(varstr));
1393  _variables.push_back(vg(vg.n_variables()-1));
1394 
1395  return curr_n_vars;
1396  }
1397  }
1398 
1399  // otherwise, fall back to adding a single variable group
1400  return this->add_variables (std::vector<std::string>(1, std::string(var)),
1401  type,
1402  active_subdomains);
1403 }
unsigned int add_variables(const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1419
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
unsigned int n_variable_groups() const
Definition: system.h:2357
const Parallel::Communicator & comm() const
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145
bool is_initialized()
Definition: system.h:2333
libmesh_assert(ctx)
const std::string & variable_name(const unsigned int i) const
Definition: system.h:2397
bool identify_variable_groups() const
Definition: system.h:2445
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349

◆ add_variable() [2/2]

unsigned int libMesh::System::add_variable ( std::string_view  var,
const Order  order = FIRST,
const FEFamily  family = LAGRANGE,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

Same as before, but assumes LAGRANGE as default value for FEType.family. If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Definition at line 1407 of file system.C.

References libMesh::System::add_variable().

1411 {
1412  return this->add_variable(var,
1413  FEType(order, family),
1414  active_subdomains);
1415 }
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1305

◆ add_variables() [1/2]

unsigned int libMesh::System::add_variables ( const std::vector< std::string > &  vars,
const FEType type,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Returns
The index number for the new variable.

Definition at line 1419 of file system.C.

References libMesh::System::_variable_groups, libMesh::System::_variable_numbers, libMesh::System::_variables, libMesh::ParallelObject::comm(), libMesh::System::identify_variable_groups(), libMesh::System::is_initialized(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_components(), libMesh::System::n_variable_groups(), libMesh::System::n_vars(), libMesh::System::variable_name(), and libMesh::System::variable_type().

Referenced by libMesh::System::add_variable(), libMesh::System::add_variables(), and SystemsTest::test100KVariables().

1422 {
1423  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1424 
1425  libmesh_assert(!this->is_initialized());
1426 
1427  libmesh_assert(this->comm().verify(vars.size()));
1428  libmesh_assert(this->comm().verify(type));
1429  libmesh_assert(this->comm().verify((active_subdomains == nullptr)));
1430 
1431  if (active_subdomains)
1432  libmesh_assert(this->comm().verify(active_subdomains->size()));
1433 
1434  // Make sure the variable isn't there already
1435  // or if it is, that it's the type we want
1436  for (auto ovar : vars)
1437  {
1438  libmesh_assert(this->comm().verify(ovar));
1439 
1440  for (auto v : make_range(this->n_vars()))
1441  if (this->variable_name(v) == ovar)
1442  {
1443  if (this->variable_type(v) == type)
1444  return _variables[v].number();
1445 
1446  libmesh_error_msg("ERROR: incompatible variable " << ovar << " has already been added for this system!");
1447  }
1448  }
1449 
1450  if (this->n_variable_groups())
1451  {
1452  // Optimize for VariableGroups here - if the user is adding multiple
1453  // variables of the same FEType and subdomain restriction, catch
1454  // that here and add them as members of the same VariableGroup.
1455  //
1456  // start by setting this flag to whatever the user has requested
1457  // and then consider the conditions which should negate it.
1458  bool should_be_in_vg = this->identify_variable_groups();
1459 
1460  VariableGroup & vg(_variable_groups.back());
1461 
1462  // get a pointer to their subdomain restriction, if any.
1463  const std::set<subdomain_id_type> * const
1464  their_active_subdomains (vg.implicitly_active() ?
1465  nullptr : &vg.active_subdomains());
1466 
1467  // Different types?
1468  if (vg.type() != type)
1469  should_be_in_vg = false;
1470 
1471  // they are restricted, we aren't?
1472  if (their_active_subdomains &&
1473  (!active_subdomains || (active_subdomains && active_subdomains->empty())))
1474  should_be_in_vg = false;
1475 
1476  // they aren't restricted, we are?
1477  if (!their_active_subdomains && (active_subdomains && !active_subdomains->empty()))
1478  should_be_in_vg = false;
1479 
1480  if (their_active_subdomains && active_subdomains)
1481  // restricted to different sets?
1482  if (*their_active_subdomains != *active_subdomains)
1483  should_be_in_vg = false;
1484 
1485  // If after all that none of the conditions were violated,
1486  // append the variables to the vg and we're done
1487  if (should_be_in_vg)
1488  {
1489  unsigned int curr_n_vars = this->n_vars();
1490 
1491  for (auto ovar : vars)
1492  {
1493  curr_n_vars = this->n_vars();
1494 
1495  vg.append (ovar);
1496 
1497  _variables.push_back(vg(vg.n_variables()-1));
1498  _variable_numbers[ovar] = curr_n_vars;
1499  }
1500  return curr_n_vars;
1501  }
1502  }
1503 
1504  const unsigned int curr_n_vars = this->n_vars();
1505 
1506  const unsigned int next_first_component = this->n_components();
1507 
1508  // We weren't able to add to an existing variable group, so
1509  // add a new variable group to the list
1510  _variable_groups.push_back((active_subdomains == nullptr) ?
1511  VariableGroup(this, vars, curr_n_vars,
1512  next_first_component, type) :
1513  VariableGroup(this, vars, curr_n_vars,
1514  next_first_component, type, *active_subdomains));
1515 
1516  const VariableGroup & vg (_variable_groups.back());
1517 
1518  // Add each component of the group individually
1519  for (auto v : make_range(vars.size()))
1520  {
1521  _variables.push_back (vg(v));
1522  _variable_numbers[vars[v]] = curr_n_vars+v;
1523  }
1524 
1525  libmesh_assert_equal_to ((curr_n_vars+vars.size()), this->n_vars());
1526 
1527  // BSK - Defer this now to System::init_data() so we can detect
1528  // VariableGroups 12/28/2012
1529  // // Add the variable group to the _dof_map
1530  // _dof_map->add_variable_group (vg);
1531 
1532  // Return the number of the new variable
1533  return cast_int<unsigned int>(curr_n_vars+vars.size()-1);
1534 }
unsigned int n_components() const
Definition: system.h:2365
unsigned int n_variable_groups() const
Definition: system.h:2357
const Parallel::Communicator & comm() const
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145
bool is_initialized()
Definition: system.h:2333
libmesh_assert(ctx)
const std::string & variable_name(const unsigned int i) const
Definition: system.h:2397
bool identify_variable_groups() const
Definition: system.h:2445
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349

◆ add_variables() [2/2]

unsigned int libMesh::System::add_variables ( const std::vector< std::string > &  vars,
const Order  order = FIRST,
const FEFamily  family = LAGRANGE,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

Same as before, but assumes LAGRANGE as default value for FEType.family. If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Definition at line 1538 of file system.C.

References libMesh::System::add_variables().

1542 {
1543  return this->add_variables(vars,
1544  FEType(order, family),
1545  active_subdomains);
1546 }
unsigned int add_variables(const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1419

◆ add_vector()

NumericVector< Number > & libMesh::System::add_vector ( std::string_view  vec_name,
const bool  projections = true,
const ParallelType  type = PARALLEL 
)
inherited

Adds the additional vector vec_name to this system.

All the additional vectors are similarly distributed, like the solution, and initialized to zero.

By default vectors added by add_vector are projected to changed grids by reinit(). To zero them instead (more efficient), pass "false" as the second argument

If the vector already exists, the existing vector is returned. after any upgrade to the projections or type has been made. We only handle upgrades (projections false->true, or type PARALLEL->GHOSTED) in this fashion, not downgrades, on the theory that if two codes have differing needs we want to support the union of those needs, not the intersection. Downgrades can only be accomplished manually, via set_vector_preservation() or by setting a vector type() and re-initializing.

Definition at line 751 of file system.C.

References libMesh::System::_dof_map, libMesh::System::_is_initialized, libMesh::System::_vector_is_adjoint, libMesh::System::_vector_projections, libMesh::System::_vectors, libMesh::NumericVector< T >::build(), libMesh::NumericVector< T >::close(), libMesh::NumericVector< T >::closed(), libMesh::ParallelObject::comm(), libMesh::GHOSTED, libMesh::NumericVector< T >::initialized(), libMesh::libmesh_assert(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::ParallelObject::n_processors(), libMesh::PARALLEL, libMesh::SERIAL, libMesh::NumericVector< T >::swap(), and libMesh::NumericVector< T >::type().

Referenced by libMesh::System::add_adjoint_rhs(), libMesh::System::add_adjoint_solution(), libMesh::System::add_sensitivity_rhs(), libMesh::System::add_sensitivity_solution(), libMesh::ExplicitSystem::add_system_rhs(), libMesh::System::add_weighted_sensitivity_adjoint_solution(), libMesh::System::add_weighted_sensitivity_solution(), alternative_fe_assembly(), libMesh::AdjointRefinementEstimator::estimate_error(), fe_assembly(), libMesh::SecondOrderUnsteadySolver::init(), libMesh::UnsteadySolver::init(), libMesh::UnsteadySolver::init_adjoints(), libMesh::TimeSolver::init_adjoints(), libMesh::OptimizationSystem::init_data(), libMesh::ContinuationSystem::init_data(), main(), libMesh::NewmarkSystem::NewmarkSystem(), libMesh::System::read_header(), libMesh::FrequencySystem::set_frequencies(), libMesh::FrequencySystem::set_frequencies_by_range(), libMesh::FrequencySystem::set_frequencies_by_steps(), SystemsTest::testAddVectorProjChange(), SystemsTest::testAddVectorTypeChange(), SystemsTest::testPostInitAddVector(), and SystemsTest::testPostInitAddVectorTypeChange().

754 {
755  parallel_object_only();
756 
757  libmesh_assert(this->comm().verify(std::string(vec_name)));
758  libmesh_assert(this->comm().verify(int(type)));
759  libmesh_assert(this->comm().verify(projections));
760 
761  // Return the vector if it is already there.
762  auto it = this->_vectors.find(vec_name);
763  if (it != this->_vectors.end())
764  {
765  // If the projection setting has *upgraded*, change it.
766  if (projections) // only do expensive lookup if needed
767  libmesh_map_find(_vector_projections, vec_name) = projections;
768 
769  NumericVector<Number> & vec = *it->second;
770 
771  // If we're in serial, our vectors are effectively SERIAL, so
772  // we'll ignore any type setting. If we're in parallel, we
773  // might have a type change to deal with.
774 
775  if (this->n_processors() > 1)
776  {
777  // If the type setting has changed in a way we can't
778  // perceive as an upgrade or a downgrade, scream.
779  libmesh_assert_equal_to(type == SERIAL,
780  vec.type() == SERIAL);
781 
782  // If the type setting has *upgraded*, change it.
783  if (type == GHOSTED && vec.type() == PARALLEL)
784  {
785  // A *really* late upgrade is expensive, but better not
786  // to risk zeroing data.
787  if (vec.initialized())
788  {
789  if (!vec.closed())
790  vec.close();
791 
792  // Ideally we'd move parallel coefficients and then
793  // add ghosted coefficients, but copy and swap is
794  // simpler. If anyone actually ever uses this case
795  // for real we can look into optimizing it.
796  auto new_vec = NumericVector<Number>::build(this->comm());
797 #ifdef LIBMESH_ENABLE_GHOSTED
798  new_vec->init (this->n_dofs(), this->n_local_dofs(),
799  _dof_map->get_send_list(), /*fast=*/false,
800  GHOSTED);
801 #else
802  libmesh_error_msg("Cannot initialize ghosted vectors when they are not enabled.");
803 #endif
804 
805  *new_vec = vec;
806  vec.swap(*new_vec);
807  }
808  else
809  vec.type() = type;
810  }
811  }
812 
813  // Any upgrades are done; we're happy here.
814  return vec;
815  }
816 
817  // Otherwise build the vector
818  auto pr = _vectors.emplace(vec_name, NumericVector<Number>::build(this->comm()));
819  auto buf = pr.first->second.get();
820  _vector_projections.emplace(vec_name, projections);
821  buf->type() = type;
822 
823  // Vectors are primal by default
824  _vector_is_adjoint.emplace(vec_name, -1);
825 
826  // Initialize it if necessary
827  if (_is_initialized)
828  {
829  if (type == GHOSTED)
830  {
831 #ifdef LIBMESH_ENABLE_GHOSTED
832  buf->init (this->n_dofs(), this->n_local_dofs(),
833  _dof_map->get_send_list(), /*fast=*/false,
834  GHOSTED);
835 #else
836  libmesh_error_msg("Cannot initialize ghosted vectors when they are not enabled.");
837 #endif
838  }
839  else
840  buf->init (this->n_dofs(), this->n_local_dofs(), false, type);
841  }
842 
843  return *buf;
844 }
bool _is_initialized
true when additional vectors and variables do not require immediate initialization, false otherwise.
Definition: system.h:2210
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
const Parallel::Communicator & comm() const
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
processor_id_type n_processors() const
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176
libmesh_assert(ctx)
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
template class LIBMESH_EXPORT NumericVector< Number >
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ add_weighted_sensitivity_adjoint_solution()

NumericVector< Number > & libMesh::System::add_weighted_sensitivity_adjoint_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's weighted sensitivity adjoint solution vectors, by default the one corresponding to the first qoi. Creates the vector if it doesn't already exist.

Definition at line 1213 of file system.C.

References libMesh::System::add_vector(), and libMesh::System::set_vector_as_adjoint().

Referenced by libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

1214 {
1215  std::ostringstream adjoint_name;
1216  adjoint_name << "weighted_sensitivity_adjoint_solution" << i;
1217 
1218  NumericVector<Number> & returnval = this->add_vector(adjoint_name.str());
1219  this->set_vector_as_adjoint(adjoint_name.str(), i);
1220  return returnval;
1221 }
void set_vector_as_adjoint(const std::string &vec_name, int qoi_num)
Allows one to set the QoI index controlling whether the vector identified by vec_name represents a so...
Definition: system.C:1107
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751
template class LIBMESH_EXPORT NumericVector< Number >

◆ add_weighted_sensitivity_solution()

NumericVector< Number > & libMesh::System::add_weighted_sensitivity_solution ( )
inherited
Returns
A reference to the solution of the last weighted sensitivity solve Creates the vector if it doesn't already exist.

Definition at line 1160 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ImplicitSystem::weighted_sensitivity_solve().

1161 {
1162  return this->add_vector("weighted_sensitivity_solution");
1163 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ adjoint_qoi_parameter_sensitivity()

void libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData sensitivities 
)
overridevirtualinherited

Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j].

Uses adjoint_solve() and the adjoint sensitivity method.

Currently uses finite differenced derivatives (partial q / partial p) and (partial R / partial p).

Reimplemented from libMesh::System.

Definition at line 490 of file implicit_system.C.

References std::abs(), libMesh::ImplicitSystem::adjoint_solve(), libMesh::SensitivityData::allocate_data(), libMesh::ExplicitSystem::assemble_qoi(), libMesh::ImplicitSystem::assemble_residual_derivatives(), libMesh::NumericVector< T >::dot(), libMesh::System::get_qoi_values(), libMesh::System::get_sensitivity_rhs(), libMesh::QoISet::has_index(), libMesh::System::is_adjoint_already_solved(), libMesh::System::n_qois(), libMesh::Real, libMesh::ParameterVector::size(), and libMesh::TOLERANCE.

Referenced by libMesh::UnsteadySolver::integrate_adjoint_sensitivity(), and main().

493 {
494  ParameterVector & parameters =
495  const_cast<ParameterVector &>(parameters_in);
496 
497  const unsigned int Np = cast_int<unsigned int>
498  (parameters.size());
499  const unsigned int Nq = this->n_qois();
500 
501  // An introduction to the problem:
502  //
503  // Residual R(u(p),p) = 0
504  // partial R / partial u = J = system matrix
505  //
506  // This implies that:
507  // d/dp(R) = 0
508  // (partial R / partial p) +
509  // (partial R / partial u) * (partial u / partial p) = 0
510 
511  // We first do an adjoint solve:
512  // J^T * z = (partial q / partial u)
513  // if we haven't already or dont have an initial condition for the adjoint
514  if (!this->is_adjoint_already_solved())
515  {
516  this->adjoint_solve(qoi_indices);
517  }
518 
519  this->assemble_residual_derivatives(parameters_in);
520 
521  // Get ready to fill in sensitivities:
522  sensitivities.allocate_data(qoi_indices, *this, parameters);
523 
524  // We use the identities:
525  // dq/dp = (partial q / partial p) + (partial q / partial u) *
526  // (partial u / partial p)
527  // dq/dp = (partial q / partial p) + (J^T * z) *
528  // (partial u / partial p)
529  // dq/dp = (partial q / partial p) + z * J *
530  // (partial u / partial p)
531 
532  // Leading to our final formula:
533  // dq/dp = (partial q / partial p) - z * (partial R / partial p)
534 
535  // In the case of adjoints with heterogenous Dirichlet boundary
536  // function phi, where
537  // q := S(u) - R(u,phi)
538  // the final formula works out to:
539  // dq/dp = (partial S / partial p) - z * (partial R / partial p)
540  // Because we currently have no direct access to
541  // (partial S / partial p), we use the identity
542  // (partial S / partial p) = (partial q / partial p) +
543  // phi * (partial R / partial p)
544  // to derive an equivalent equation:
545  // dq/dp = (partial q / partial p) - (z-phi) * (partial R / partial p)
546 
547  // Since z-phi degrees of freedom are zero for constrained indices,
548  // we can use the same constrained -(partial R / partial p) that we
549  // use for forward sensitivity solves, taking into account the
550  // differing sign convention.
551  //
552  // Since that vector is constrained, its constrained indices are
553  // zero, so its product with phi is zero, so we can neglect the
554  // evaluation of phi terms.
555 
556  for (unsigned int j=0; j != Np; ++j)
557  {
558  // We currently get partial derivatives via central differencing
559 
560  // (partial q / partial p) ~= (q(p+dp)-q(p-dp))/(2*dp)
561  // (partial R / partial p) ~= (rhs(p+dp) - rhs(p-dp))/(2*dp)
562 
563  Number old_parameter = *parameters[j];
564 
565  const Real delta_p =
566  TOLERANCE * std::max(std::abs(old_parameter), 1e-3);
567 
568  *parameters[j] = old_parameter - delta_p;
569  this->assemble_qoi(qoi_indices);
570  const std::vector<Number> qoi_minus = this->get_qoi_values();
571 
572  NumericVector<Number> & neg_partialR_partialp = this->get_sensitivity_rhs(j);
573 
574  *parameters[j] = old_parameter + delta_p;
575  this->assemble_qoi(qoi_indices);
576  const std::vector<Number> qoi_plus = this->get_qoi_values();
577 
578  std::vector<Number> partialq_partialp(Nq, 0);
579  for (unsigned int i=0; i != Nq; ++i)
580  if (qoi_indices.has_index(i))
581  partialq_partialp[i] = (qoi_plus[i] - qoi_minus[i]) / (2.*delta_p);
582 
583  // Don't leave the parameter changed
584  *parameters[j] = old_parameter;
585 
586  for (unsigned int i=0; i != Nq; ++i)
587  if (qoi_indices.has_index(i))
588  sensitivities[i][j] = partialq_partialp[i] +
589  neg_partialR_partialp.dot(this->get_adjoint_solution(i));
590  }
591 
592  // All parameters have been reset.
593  // Reset the original qoi.
594 
595  this->assemble_qoi(qoi_indices);
596 }
static constexpr Real TOLERANCE
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
NumericVector< Number > & get_sensitivity_rhs(unsigned int i=0)
Definition: system.C:1285
virtual std::pair< unsigned int, Real > adjoint_solve(const QoISet &qoi_indices=QoISet()) override
Assembles & solves the linear system (dR/du)^T*z = dq/du, for those quantities of interest q specifie...
ADRealEigenVector< T, D, asd > abs(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:57
bool is_adjoint_already_solved() const
Accessor for the adjoint_already_solved boolean.
Definition: system.h:406
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual void assemble_qoi(const QoISet &qoi_indices=QoISet()) override
Prepares qoi for quantity of interest assembly, then calls user qoi function.
virtual void assemble_residual_derivatives(const ParameterVector &parameters) override
Residual parameter derivative function.
template class LIBMESH_EXPORT NumericVector< Number >
std::vector< Number > get_qoi_values() const
Returns a copy of qoi, not a reference.
Definition: system.C:2341

◆ adjoint_solve()

std::pair< unsigned int, Real > libMesh::ImplicitSystem::adjoint_solve ( const QoISet qoi_indices = QoISet())
overridevirtualinherited

Assembles & solves the linear system (dR/du)^T*z = dq/du, for those quantities of interest q specified by qoi_indices.

Leave qoi_indices empty to solve all adjoint problems.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

Reimplemented from libMesh::System.

Reimplemented in libMesh::DifferentiableSystem.

Definition at line 169 of file implicit_system.C.

References libMesh::System::add_adjoint_solution(), libMesh::LinearSolver< T >::adjoint_solve(), libMesh::System::assemble_before_solve, libMesh::ExplicitSystem::assemble_qoi_derivative(), libMesh::ImplicitSystem::assembly(), libMesh::DofMap::enforce_adjoint_constraints_exactly(), libMesh::System::get_adjoint_rhs(), libMesh::System::get_adjoint_solution(), libMesh::System::get_dof_map(), libMesh::ImplicitSystem::get_linear_solve_parameters(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::QoISet::has_index(), libMesh::make_range(), libMesh::ImplicitSystem::matrix, and libMesh::System::n_qois().

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

170 {
171  // Log how long the linear solve takes.
172  LOG_SCOPE("adjoint_solve()", "ImplicitSystem");
173 
174  if (this->assemble_before_solve)
175  // Assemble the linear system
176  this->assembly (/* get_residual = */ false,
177  /* get_jacobian = */ true);
178 
179  // The adjoint problem is linear
180  LinearSolver<Number> * solver = this->get_linear_solver();
181 
182  // Reset and build the RHS from the QOI derivative
183  this->assemble_qoi_derivative(qoi_indices,
184  /* include_liftfunc = */ false,
185  /* apply_constraints = */ true);
186 
187  // Our iteration counts and residuals will be sums of the individual
188  // results
189  std::pair<unsigned int, Real> solver_params =
191  std::pair<unsigned int, Real> totalrval = std::make_pair(0,0.0);
192 
193  for (auto i : make_range(this->n_qois()))
194  if (qoi_indices.has_index(i))
195  {
196  const std::pair<unsigned int, Real> rval =
197  solver->adjoint_solve (*matrix, this->add_adjoint_solution(i),
198  this->get_adjoint_rhs(i),
199  double(solver_params.second),
200  solver_params.first);
201 
202  totalrval.first += rval.first;
203  totalrval.second += rval.second;
204  }
205 
206  // The linear solver may not have fit our constraints exactly
207 #ifdef LIBMESH_ENABLE_CONSTRAINTS
208  for (auto i : make_range(this->n_qois()))
209  if (qoi_indices.has_index(i))
211  (this->get_adjoint_solution(i), i);
212 #endif
213 
214  return totalrval;
215 }
NumericVector< Number > & add_adjoint_solution(unsigned int i=0)
Definition: system.C:1181
virtual std::pair< unsigned int, Real > get_linear_solve_parameters() const
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
virtual LinearSolver< Number > * get_linear_solver() const
void enforce_adjoint_constraints_exactly(NumericVector< Number > &v, unsigned int q) const
Heterogeneously constrains the numeric vector v, which represents an adjoint solution defined on the ...
Definition: dof_map.h:2278
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
template class LIBMESH_EXPORT LinearSolver< Number >
SparseMatrix< Number > * matrix
The system matrix.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
virtual void assemble_qoi_derivative(const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true) override
Prepares adjoint_rhs for quantity of interest derivative assembly, then calls user qoi derivative fun...
NumericVector< Number > & get_adjoint_solution(unsigned int i=0)
Definition: system.C:1193
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1527
const DofMap & get_dof_map() const
Definition: system.h:2293
NumericVector< Number > & get_adjoint_rhs(unsigned int i=0)
Definition: system.C:1255

◆ allocate_data_structures()

void TransientRBConstruction::allocate_data_structures ( )
overrideprotectedvirtual

Helper function that actually allocates all the data structures required by this class.

Reimplemented from libMesh::RBConstruction.

Definition at line 179 of file transient_rb_construction.C.

References libMesh::RBConstruction::allocate_data_structures(), libMesh::DofMap::attach_matrix(), libMesh::SparseMatrix< T >::build(), libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::System::get_dof_map(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBThetaExpansion::get_n_outputs(), libMesh::RBTemporalDiscretization::get_n_time_steps(), libMesh::RBConstruction::get_rb_theta_expansion(), L2_matrix, M_q_vector, libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::RBConstruction::Nmax, non_dirichlet_L2_matrix, non_dirichlet_M_q_vector, libMesh::PARALLEL, RB_ic_proj_rhs_all_N, libMesh::DenseVector< T >::resize(), libMesh::RBConstruction::store_non_dirichlet_operators, temporal_data, and truth_outputs_all_k.

180 {
182 
183  TransientRBThetaExpansion & trans_theta_expansion =
184  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
185  const unsigned int Q_m = trans_theta_expansion.get_n_M_terms();
186  const unsigned int n_outputs = trans_theta_expansion.get_n_outputs();
187 
188  // Resize and allocate vectors for storing mesh-dependent data
189  const unsigned int n_time_levels = get_n_time_steps()+1;
190  temporal_data.resize(n_time_levels);
191 
192  // Resize vectors for storing mesh-dependent data but only
193  // initialize if initialize_mesh_dependent_data == true
194  M_q_vector.resize(Q_m);
195 
196  // Only initialize the mass matrices if we
197  // are not in single-matrix mode
198  {
199  DofMap & dof_map = this->get_dof_map();
200 
201  dof_map.attach_matrix(*L2_matrix);
202  L2_matrix->init();
203  L2_matrix->zero();
204 
205  for (unsigned int q=0; q<Q_m; q++)
206  {
207  // Initialize the memory for the matrices
209  dof_map.attach_matrix(*M_q_vector[q]);
210  M_q_vector[q]->init();
211  M_q_vector[q]->zero();
212  }
213 
214  // We also need to initialize a second set of non-Dirichlet operators
216  {
217  dof_map.attach_matrix(*non_dirichlet_L2_matrix);
218  non_dirichlet_L2_matrix->init();
219  non_dirichlet_L2_matrix->zero();
220 
221  non_dirichlet_M_q_vector.resize(Q_m);
222  for (unsigned int q=0; q<Q_m; q++)
223  {
224  // Initialize the memory for the matrices
226  dof_map.attach_matrix(*non_dirichlet_M_q_vector[q]);
227  non_dirichlet_M_q_vector[q]->init();
228  non_dirichlet_M_q_vector[q]->zero();
229  }
230  }
231  }
232 
233  for (unsigned int i=0; i<n_time_levels; i++)
234  {
236  temporal_data[i]->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
237  }
238 
239  // and the truth output vectors
240  truth_outputs_all_k.resize(n_outputs);
241  for (unsigned int n=0; n<n_outputs; n++)
242  {
243  truth_outputs_all_k[n].resize(n_time_levels);
244  }
245 
246  // This vector is for storing rhs entries for
247  // computing the projection of the initial condition
248  // into the RB space
250 }
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
std::vector< std::unique_ptr< SparseMatrix< Number > > > non_dirichlet_M_q_vector
We sometimes also need a second set of M_q matrices that do not have the Dirichlet boundary condition...
void resize(const unsigned int n)
Resize the vector.
Definition: dense_vector.h:374
const Parallel::Communicator & comm() const
std::vector< std::vector< Number > > truth_outputs_all_k
The truth outputs for all time-levels from the most recent truth_solve.
dof_id_type n_local_dofs() const
Definition: system.C:150
static std::unique_ptr< SparseMatrix< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package(), const MatrixBuildType matrix_build_type=MatrixBuildType::AUTOMATIC)
Builds a SparseMatrix<T> using the linear solver package specified by solver_package.
dof_id_type n_dofs() const
Definition: system.C:113
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
std::unique_ptr< SparseMatrix< Number > > non_dirichlet_L2_matrix
The L2 matrix without Dirichlet conditions enforced.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
std::vector< std::unique_ptr< NumericVector< Number > > > temporal_data
Dense matrix to store the data that we use for the temporal POD.
unsigned int get_n_time_steps() const
Get/set the total number of time-steps.
std::vector< std::unique_ptr< SparseMatrix< Number > > > M_q_vector
Vector storing the Q_m matrices from the mass operator.
const DofMap & get_dof_map() const
Definition: system.h:2293
virtual void allocate_data_structures()
Helper function that actually allocates all the data structures required by this class.
unsigned int Nmax
Maximum number of reduced basis functions we are willing to use.
DenseVector< Number > RB_ic_proj_rhs_all_N
The vector that stores the right-hand side for the initial condition projections. ...

◆ assemble()

virtual void libMesh::LinearImplicitSystem::assemble ( )
inlineoverridevirtualinherited

Prepares matrix and _dof_map for matrix assembly.

Does not actually assemble anything. For matrix assembly, use the assemble() in derived classes. Should be overridden in derived classes.

Reimplemented from libMesh::ImplicitSystem.

Reimplemented in libMesh::FrequencySystem, and libMesh::NewmarkSystem.

Definition at line 115 of file linear_implicit_system.h.

References libMesh::ImplicitSystem::assemble().

Referenced by libMesh::NewmarkSystem::assemble(), libMesh::FrequencySystem::assemble(), libMesh::LinearImplicitSystem::assembly(), and libMesh::LinearImplicitSystem::solve().

virtual void assemble() override
Prepares matrix and rhs for system assembly, then calls user assembly function.

◆ assemble_affine_expansion()

void TransientRBConstruction::assemble_affine_expansion ( bool  skip_matrix_assembly,
bool  skip_vector_assembly 
)
overrideprotectedvirtual

Override assemble_affine_expansion to also initialize RB_ic_proj_rhs_all_N, if necessary.

Reimplemented from libMesh::RBConstruction.

Definition at line 252 of file transient_rb_construction.C.

References libMesh::RBConstruction::assemble_affine_expansion(), libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::DenseVector< T >::dot(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_rb_evaluation(), initialize_truth(), L2_matrix, libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, RB_ic_proj_rhs_all_N, and libMesh::System::solution.

254 {
255  // Call parent's assembly functions
256  Parent::assemble_affine_expansion(skip_matrix_assembly, skip_vector_assembly);
257 
258  // Now update RB_ic_proj_rhs_all_N if necessary.
259  // This allows us to compute the L2 projection
260  // of the initial condition into the RB space
261  // so that we can continue to enrich a given RB
262  // space.
263  if (get_rb_evaluation().get_n_basis_functions() > 0)
264  {
265  // Load the initial condition into the solution vector
267 
268  std::unique_ptr<NumericVector<Number>> temp1 = NumericVector<Number>::build(this->comm());
269  temp1->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
270 
271  // First compute the right-hand side vector for the L2 projection
272  L2_matrix->vector_mult(*temp1, *solution);
273 
274  for (unsigned int i=0; i<get_rb_evaluation().get_n_basis_functions(); i++)
275  {
276  RB_ic_proj_rhs_all_N(i) = temp1->dot(get_rb_evaluation().get_basis_function(i));
277  }
278  }
279 }
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
virtual void initialize_truth()
This function imposes a truth initial condition, defaults to zero initial condition if the flag nonze...
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
CompareTypes< T, T2 >::supertype dot(const DenseVector< T2 > &vec) const
Definition: dense_vector.h:470
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
virtual void assemble_affine_expansion(bool skip_matrix_assembly, bool skip_vector_assembly)
Assemble the matrices and vectors for this system.
DenseVector< Number > RB_ic_proj_rhs_all_N
The vector that stores the right-hand side for the initial condition projections. ...

◆ assemble_all_affine_operators()

void TransientRBConstruction::assemble_all_affine_operators ( )
overridevirtual

Assemble and store all the affine operators.

Override to assemble the mass matrix operators.

Reimplemented from libMesh::RBConstruction.

Definition at line 485 of file transient_rb_construction.C.

References libMesh::RBConstruction::assemble_all_affine_operators(), assemble_Mq_matrix(), get_M_q(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), get_non_dirichlet_M_q(), libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::RBConstruction::store_non_dirichlet_operators.

486 {
488 
489  TransientRBThetaExpansion & trans_theta_expansion =
490  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
491 
492  for (unsigned int q=0; q<trans_theta_expansion.get_n_M_terms(); q++)
494 
496  {
497  for (unsigned int q=0; q<trans_theta_expansion.get_n_M_terms(); q++)
499  }
500 }
SparseMatrix< Number > * get_M_q(unsigned int q)
Get a pointer to M_q.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
void assemble_Mq_matrix(unsigned int q, SparseMatrix< Number > *input_matrix, bool apply_dirichlet_bc=true)
Assemble the q^th affine term of the mass matrix and store it in input_matrix.
SparseMatrix< Number > * get_non_dirichlet_M_q(unsigned int q)
Get a pointer to non_dirichlet_M_q.
virtual void assemble_all_affine_operators()
Assemble and store all Q_a affine operators as well as the inner-product matrix.

◆ assemble_all_affine_vectors()

void libMesh::RBConstruction::assemble_all_affine_vectors ( )
protectedvirtualinherited

Assemble and store the affine RHS vectors.

Definition at line 1090 of file rb_construction.C.

References libMesh::RBConstruction::assemble_Fq_vector(), libMesh::RBConstruction::get_Fq(), libMesh::RBThetaExpansion::get_n_F_terms(), libMesh::RBConstruction::get_non_dirichlet_Fq(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::out, and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by libMesh::RBConstruction::assemble_affine_expansion().

1091 {
1092  for (unsigned int q_f=0; q_f<get_rb_theta_expansion().get_n_F_terms(); q_f++)
1093  {
1094  libMesh::out << "Assembling affine vector " << (q_f+1) << " of "
1095  << get_rb_theta_expansion().get_n_F_terms() << std::endl;
1096  assemble_Fq_vector(q_f, get_Fq(q_f));
1097  }
1098 
1100  {
1101  for (unsigned int q_f=0; q_f<get_rb_theta_expansion().get_n_F_terms(); q_f++)
1102  {
1103  libMesh::out << "Assembling non-Dirichlet affine vector " << (q_f+1) << " of "
1104  << get_rb_theta_expansion().get_n_F_terms() << std::endl;
1105  assemble_Fq_vector(q_f, get_non_dirichlet_Fq(q_f), false);
1106  }
1107  }
1108 
1109 }
unsigned int get_n_F_terms() const
Get Q_f, the number of terms in the affine expansion for the right-hand side.
NumericVector< Number > * get_Fq(unsigned int q)
Get a pointer to Fq.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
void assemble_Fq_vector(unsigned int q, NumericVector< Number > *input_vector, bool apply_dof_constraints=true)
Assemble the q^th affine vector and store it in input_matrix.
NumericVector< Number > * get_non_dirichlet_Fq(unsigned int q)
Get a pointer to non-Dirichlet Fq.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
OStreamProxy out

◆ assemble_all_output_vectors()

void libMesh::RBConstruction::assemble_all_output_vectors ( )
protectedvirtualinherited

Assemble and store the output vectors.

Definition at line 1128 of file rb_construction.C.

References libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::RBThetaExpansion::get_n_output_terms(), libMesh::RBThetaExpansion::get_n_outputs(), libMesh::RBConstruction::get_non_dirichlet_output_vector(), libMesh::RBAssemblyExpansion::get_output_assembly(), libMesh::RBConstruction::get_output_vector(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::out, libMesh::RBConstruction::rb_assembly_expansion, libMesh::RBConstruction::store_non_dirichlet_operators, and libMesh::NumericVector< T >::zero().

Referenced by libMesh::RBConstruction::assemble_affine_expansion().

1129 {
1130  for (unsigned int n=0; n<get_rb_theta_expansion().get_n_outputs(); n++)
1131  for (unsigned int q_l=0; q_l<get_rb_theta_expansion().get_n_output_terms(n); q_l++)
1132  {
1133  libMesh::out << "Assembling output vector, (" << (n+1) << "," << (q_l+1)
1134  << ") of (" << get_rb_theta_expansion().get_n_outputs()
1135  << "," << get_rb_theta_expansion().get_n_output_terms(n) << ")"
1136  << std::endl;
1137  get_output_vector(n, q_l)->zero();
1139  nullptr,
1140  get_output_vector(n,q_l),
1141  false, /* symmetrize */
1142  true /* apply_dof_constraints */);
1143  }
1144 
1146  {
1147  for (unsigned int n=0; n<get_rb_theta_expansion().get_n_outputs(); n++)
1148  for (unsigned int q_l=0; q_l<get_rb_theta_expansion().get_n_output_terms(n); q_l++)
1149  {
1150  libMesh::out << "Assembling non-Dirichlet output vector, (" << (n+1) << "," << (q_l+1)
1151  << ") of (" << get_rb_theta_expansion().get_n_outputs()
1152  << "," << get_rb_theta_expansion().get_n_output_terms(n) << ")"
1153  << std::endl;
1156  nullptr,
1158  false, /* symmetrize */
1159  false /* apply_dof_constraints */);
1160  }
1161  }
1162 }
ElemAssembly & get_output_assembly(unsigned int output_index, unsigned int q_l)
Return a reference to the specified output assembly object.
unsigned int get_n_outputs() const
Get n_outputs, the number output functionals.
virtual void zero()=0
Set all entries to zero.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
void add_scaled_matrix_and_vector(Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
This function loops over the mesh and applies the specified interior and/or boundary assembly routine...
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
unsigned int get_n_output_terms(unsigned int output_index) const
Get the number of affine terms associated with the specified output.
OStreamProxy out
RBAssemblyExpansion * rb_assembly_expansion
This member holds the (parameter independent) assembly functors that define the "affine expansion" of...
NumericVector< Number > * get_output_vector(unsigned int n, unsigned int q_l)
Get a pointer to the n^th output.
NumericVector< Number > * get_non_dirichlet_output_vector(unsigned int n, unsigned int q_l)
Get a pointer to non-Dirichlet output vector.

◆ assemble_Aq_matrix()

void libMesh::RBConstruction::assemble_Aq_matrix ( unsigned int  q,
SparseMatrix< Number > *  input_matrix,
bool  apply_dof_constraints = true 
)
inherited

Assemble the q^th affine matrix and store it in input_matrix.

Definition at line 1016 of file rb_construction.C.

References libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::RBAssemblyExpansion::get_A_assembly(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBConstruction::rb_assembly_expansion, and libMesh::SparseMatrix< T >::zero().

Referenced by libMesh::RBConstruction::assemble_all_affine_operators().

1019 {
1020  libmesh_error_msg_if(q >= get_rb_theta_expansion().get_n_A_terms(),
1021  "Error: We must have q < Q_a in assemble_Aq_matrix.");
1022 
1023  input_matrix->zero();
1024 
1027  input_matrix,
1028  nullptr,
1029  false, /* symmetrize */
1030  apply_dof_constraints);
1031 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
virtual void zero()=0
Set all entries to 0.
void add_scaled_matrix_and_vector(Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
This function loops over the mesh and applies the specified interior and/or boundary assembly routine...
ElemAssembly & get_A_assembly(unsigned int q)
Return a reference to the specified A_assembly object.
RBAssemblyExpansion * rb_assembly_expansion
This member holds the (parameter independent) assembly functors that define the "affine expansion" of...

◆ assemble_Fq_vector()

void libMesh::RBConstruction::assemble_Fq_vector ( unsigned int  q,
NumericVector< Number > *  input_vector,
bool  apply_dof_constraints = true 
)
inherited

Assemble the q^th affine vector and store it in input_matrix.

Definition at line 1111 of file rb_construction.C.

References libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::RBAssemblyExpansion::get_F_assembly(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBConstruction::rb_assembly_expansion, and libMesh::NumericVector< T >::zero().

Referenced by libMesh::RBConstruction::assemble_all_affine_vectors().

1114 {
1115  libmesh_error_msg_if(q >= get_rb_theta_expansion().get_n_F_terms(),
1116  "Error: We must have q < Q_f in assemble_Fq_vector.");
1117 
1118  input_vector->zero();
1119 
1122  nullptr,
1123  input_vector,
1124  false, /* symmetrize */
1125  apply_dof_constraints /* apply_dof_constraints */);
1126 }
ElemAssembly & get_F_assembly(unsigned int q)
Return a reference to the specified F_assembly object.
virtual void zero()=0
Set all entries to zero.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
void add_scaled_matrix_and_vector(Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
This function loops over the mesh and applies the specified interior and/or boundary assembly routine...
RBAssemblyExpansion * rb_assembly_expansion
This member holds the (parameter independent) assembly functors that define the "affine expansion" of...

◆ assemble_inner_product_matrix()

void libMesh::RBConstruction::assemble_inner_product_matrix ( SparseMatrix< Number > *  input_matrix,
bool  apply_dof_constraints = true 
)
inherited

Assemble the inner product matrix and store it in input_matrix.

Definition at line 983 of file rb_construction.C.

References libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::RBConstruction::energy_inner_product_coeffs, libMesh::RBAssemblyExpansion::get_A_assembly(), libMesh::RBThetaExpansion::get_n_A_terms(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBConstruction::inner_product_assembly, libMesh::RBConstruction::rb_assembly_expansion, libMesh::RBConstruction::use_energy_inner_product, and libMesh::SparseMatrix< T >::zero().

Referenced by libMesh::RBConstruction::assemble_misc_matrices().

985 {
986  input_matrix->zero();
987 
989  {
992  input_matrix,
993  nullptr,
994  false, /* symmetrize */
995  apply_dof_constraints);
996  }
997  else
998  {
999  libmesh_error_msg_if(energy_inner_product_coeffs.size() != get_rb_theta_expansion().get_n_A_terms(),
1000  "Error: invalid number of entries in energy_inner_product_coeffs.");
1001 
1002  // We symmetrize below so that we may use the energy inner-product even in cases
1003  // where the A_q are not symmetric.
1004  for (unsigned int q_a=0; q_a<get_rb_theta_expansion().get_n_A_terms(); q_a++)
1005  {
1008  input_matrix,
1009  nullptr,
1010  true, /* symmetrize */
1011  apply_dof_constraints);
1012  }
1013  }
1014 }
unsigned int get_n_A_terms() const
Get Q_a, the number of terms in the affine expansion for the bilinear form.
std::vector< Number > energy_inner_product_coeffs
We may optionally want to use the "energy inner-product" rather than the inner-product assembly speci...
bool use_energy_inner_product
Boolean to indicate whether we&#39;re using the energy inner-product.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
virtual void zero()=0
Set all entries to 0.
void add_scaled_matrix_and_vector(Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
This function loops over the mesh and applies the specified interior and/or boundary assembly routine...
ElemAssembly * inner_product_assembly
Pointer to inner product assembly.
ElemAssembly & get_A_assembly(unsigned int q)
Return a reference to the specified A_assembly object.
RBAssemblyExpansion * rb_assembly_expansion
This member holds the (parameter independent) assembly functors that define the "affine expansion" of...

◆ assemble_L2_matrix()

void TransientRBConstruction::assemble_L2_matrix ( SparseMatrix< Number > *  input_matrix,
bool  apply_dirichlet_bc = true 
)

Assemble the L2 matrix.

Definition at line 345 of file transient_rb_construction.C.

References libMesh::RBConstruction::add_scaled_matrix_and_vector(), L2_assembly, and libMesh::SparseMatrix< T >::zero().

Referenced by assemble_misc_matrices().

346 {
347  input_matrix->zero();
349  L2_assembly,
350  input_matrix,
351  nullptr,
352  false, /* symmetrize */
353  apply_dirichlet_bc);
354 }
virtual void zero()=0
Set all entries to 0.
ElemAssembly * L2_assembly
Function pointer for assembling the L2 matrix.
void add_scaled_matrix_and_vector(Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
This function loops over the mesh and applies the specified interior and/or boundary assembly routine...

◆ assemble_mass_matrix()

void TransientRBConstruction::assemble_mass_matrix ( SparseMatrix< Number > *  input_matrix)

Assemble the mass matrix at the current parameter and store it in input_matrix.

Definition at line 356 of file transient_rb_construction.C.

References add_scaled_mass_matrix(), and libMesh::SparseMatrix< T >::zero().

357 {
358  input_matrix->zero();
359  add_scaled_mass_matrix(1., input_matrix);
360 }
virtual void zero()=0
Set all entries to 0.
void add_scaled_mass_matrix(Number scalar, SparseMatrix< Number > *input_matrix)
Add the scaled mass matrix (assembled for the current parameter) to input_matrix. ...

◆ assemble_misc_matrices()

void TransientRBConstruction::assemble_misc_matrices ( )
overridevirtual

Override to assemble the L2 matrix as well.

Reimplemented from libMesh::RBConstruction.

Definition at line 502 of file transient_rb_construction.C.

References assemble_L2_matrix(), libMesh::RBConstruction::assemble_misc_matrices(), L2_matrix, non_dirichlet_L2_matrix, libMesh::out, and libMesh::RBConstruction::store_non_dirichlet_operators.

503 {
504  libMesh::out << "Assembling L2 matrix" << std::endl;
506 
508  {
509  libMesh::out << "Assembling non-Dirichlet L2 matrix" << std::endl;
510  assemble_L2_matrix(non_dirichlet_L2_matrix.get(), /* apply_dirichlet_bc = */ false);
511  }
512 
514 }
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
void assemble_L2_matrix(SparseMatrix< Number > *input_matrix, bool apply_dirichlet_bc=true)
Assemble the L2 matrix.
std::unique_ptr< SparseMatrix< Number > > non_dirichlet_L2_matrix
The L2 matrix without Dirichlet conditions enforced.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
OStreamProxy out
virtual void assemble_misc_matrices()
Assemble and store all the inner-product matrix, the constraint matrix (for constrained problems) and...

◆ assemble_Mq_matrix()

void TransientRBConstruction::assemble_Mq_matrix ( unsigned int  q,
SparseMatrix< Number > *  input_matrix,
bool  apply_dirichlet_bc = true 
)

Assemble the q^th affine term of the mass matrix and store it in input_matrix.

Definition at line 465 of file transient_rb_construction.C.

References libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBConstruction::get_rb_assembly_expansion(), libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::SparseMatrix< T >::zero().

Referenced by assemble_all_affine_operators().

466 {
467  TransientRBThetaExpansion & trans_theta_expansion =
468  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
469 
470  TransientRBAssemblyExpansion & trans_assembly_expansion =
471  cast_ref<TransientRBAssemblyExpansion &>(get_rb_assembly_expansion());
472 
473  libmesh_error_msg_if(q >= trans_theta_expansion.get_n_M_terms(),
474  "Error: We must have q < Q_m in assemble_Mq_matrix.");
475 
476  input_matrix->zero();
478  &trans_assembly_expansion.get_M_assembly(q),
479  input_matrix,
480  nullptr,
481  false, /* symmetrize */
482  apply_dirichlet_bc);
483 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
virtual void zero()=0
Set all entries to 0.
RBAssemblyExpansion & get_rb_assembly_expansion()
void add_scaled_matrix_and_vector(Number scalar, ElemAssembly *elem_assembly, SparseMatrix< Number > *input_matrix, NumericVector< Number > *input_vector, bool symmetrize=false, bool apply_dof_constraints=true)
This function loops over the mesh and applies the specified interior and/or boundary assembly routine...

◆ assemble_qoi()

void libMesh::ExplicitSystem::assemble_qoi ( const QoISet qoi_indices = QoISet())
overridevirtualinherited

Prepares qoi for quantity of interest assembly, then calls user qoi function.

Can be overridden in derived classes.

Reimplemented from libMesh::System.

Reimplemented in libMesh::FEMSystem.

Definition at line 54 of file explicit_system.C.

References libMesh::System::assemble_qoi(), libMesh::QoISet::has_index(), libMesh::make_range(), libMesh::System::n_qois(), and libMesh::System::set_qoi().

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::EulerSolver::integrate_qoi_timestep(), libMesh::SteadySolver::integrate_qoi_timestep(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

55 {
56  // The user quantity of interest assembly gets to expect to
57  // accumulate on initially zero values
58  for (auto i : make_range(this->n_qois()))
59  if (qoi_indices.has_index(i))
60  this->set_qoi(i, 0);
61 
62  Parent::assemble_qoi (qoi_indices);
63 }
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
void set_qoi(unsigned int qoi_index, Number qoi_value)
Definition: system.C:2326
virtual void assemble_qoi(const QoISet &qoi_indices=QoISet())
Calls user qoi function.
Definition: system.C:560

◆ assemble_qoi_derivative()

void libMesh::ExplicitSystem::assemble_qoi_derivative ( const QoISet qoi_indices = QoISet(),
bool  include_liftfunc = true,
bool  apply_constraints = true 
)
overridevirtualinherited

Prepares adjoint_rhs for quantity of interest derivative assembly, then calls user qoi derivative function.

Can be overridden in derived classes.

Reimplemented from libMesh::System.

Reimplemented in libMesh::FEMSystem.

Definition at line 67 of file explicit_system.C.

References libMesh::System::add_adjoint_rhs(), libMesh::System::assemble_qoi_derivative(), libMesh::QoISet::has_index(), libMesh::make_range(), libMesh::System::n_qois(), and libMesh::NumericVector< T >::zero().

Referenced by libMesh::ImplicitSystem::adjoint_solve(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), and libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

70 {
71  // The user quantity of interest derivative assembly gets to expect
72  // to accumulate on initially zero vectors
73  for (auto i : make_range(this->n_qois()))
74  if (qoi_indices.has_index(i))
75  this->add_adjoint_rhs(i).zero();
76 
77  Parent::assemble_qoi_derivative (qoi_indices, include_liftfunc,
78  apply_constraints);
79 }
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
virtual void assemble_qoi_derivative(const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true)
Calls user qoi derivative function.
Definition: system.C:571
virtual void zero()=0
Set all entries to zero.
NumericVector< Number > & add_adjoint_rhs(unsigned int i=0)
Definition: system.C:1245
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134

◆ assemble_residual_derivatives()

void libMesh::ImplicitSystem::assemble_residual_derivatives ( const ParameterVector parameters)
overridevirtualinherited

Residual parameter derivative function.

Uses finite differences by default.

This will assemble the sensitivity rhs vectors to hold -(partial R / partial p_i), making them ready to solve the forward sensitivity equation.

Can be overridden in derived classes.

Reimplemented from libMesh::System.

Definition at line 447 of file implicit_system.C.

References std::abs(), libMesh::System::add_sensitivity_rhs(), libMesh::ImplicitSystem::assembly(), libMesh::NumericVector< T >::close(), libMesh::Real, libMesh::ExplicitSystem::rhs, libMesh::ParameterVector::size(), and libMesh::TOLERANCE.

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), and libMesh::ImplicitSystem::sensitivity_solve().

448 {
449  ParameterVector & parameters =
450  const_cast<ParameterVector &>(parameters_in);
451 
452  const unsigned int Np = cast_int<unsigned int>
453  (parameters.size());
454 
455  for (unsigned int p=0; p != Np; ++p)
456  {
457  NumericVector<Number> & sensitivity_rhs = this->add_sensitivity_rhs(p);
458 
459  // Approximate -(partial R / partial p) by
460  // (R(p-dp) - R(p+dp)) / (2*dp)
461 
462  Number old_parameter = *parameters[p];
463 
464  const Real delta_p =
465  TOLERANCE * std::max(std::abs(old_parameter), 1e-3);
466 
467  *parameters[p] -= delta_p;
468 
469  // this->assembly(true, false, true);
470  this->assembly(true, false, false);
471  this->rhs->close();
472  sensitivity_rhs = *this->rhs;
473 
474  *parameters[p] = old_parameter + delta_p;
475 
476  // this->assembly(true, false, true);
477  this->assembly(true, false, false);
478  this->rhs->close();
479 
480  sensitivity_rhs -= *this->rhs;
481  sensitivity_rhs /= (2*delta_p);
482  sensitivity_rhs.close();
483 
484  *parameters[p] = old_parameter;
485  }
486 }
static constexpr Real TOLERANCE
NumericVector< Number > * rhs
The system matrix.
NumericVector< Number > & add_sensitivity_rhs(unsigned int i=0)
Definition: system.C:1275
ADRealEigenVector< T, D, asd > abs(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:57
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
template class LIBMESH_EXPORT NumericVector< Number >

◆ assembly()

void libMesh::LinearImplicitSystem::assembly ( bool  get_residual,
bool  get_jacobian,
bool  apply_heterogeneous_constraints = false,
bool  apply_no_constraints = false 
)
overridevirtualinherited

Assembles a residual in rhs and/or a jacobian in matrix, as requested.

Reimplemented from libMesh::ImplicitSystem.

Definition at line 359 of file linear_implicit_system.C.

References libMesh::NumericVector< T >::add_vector(), libMesh::LinearImplicitSystem::assemble(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::ImplicitSystem::matrix, libMesh::ExplicitSystem::rhs, and libMesh::System::solution.

363 {
364  // Residual R(u(p),p) := A(p)*u(p) - b(p)
365  // partial R / partial u = A
366 
367  this->assemble();
368  this->rhs->close();
369  this->matrix->close();
370 
371  *(this->rhs) *= -1.0;
372  this->rhs->add_vector(*this->solution, *this->matrix);
373 }
virtual void assemble() override
Prepares matrix and _dof_map for matrix assembly.
virtual void add_vector(const T *v, const std::vector< numeric_index_type > &dof_indices)
Computes , where v is a pointer and each dof_indices[i] specifies where to add value v[i]...
NumericVector< Number > * rhs
The system matrix.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
SparseMatrix< Number > * matrix
The system matrix.

◆ attach_assemble_function()

void libMesh::System::attach_assemble_function ( void   fptrEquationSystems &es, const std::string &name)
inherited

Register a user function to use in assembling the system matrix and RHS.

Definition at line 2109 of file system.C.

References libMesh::System::_assemble_system_function, libMesh::System::_assemble_system_object, fptr(), and libMesh::libmesh_assert().

Referenced by assemble_and_solve(), main(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), SystemsTest::testAssemblyWithDgFemContext(), SystemsTest::testDofCouplingWithVarGroups(), and PeriodicBCTest::testPeriodicBC().

2111 {
2113 
2114  if (_assemble_system_object != nullptr)
2115  {
2116  libmesh_warning("WARNING: Cannot specify both assembly function and object!");
2117 
2118  _assemble_system_object = nullptr;
2119  }
2120 
2122 }
Assembly * _assemble_system_object
Object that assembles the system.
Definition: system.h:2070
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)
void(* _assemble_system_function)(EquationSystems &es, const std::string &name)
Function that assembles the system.
Definition: system.h:2064

◆ attach_assemble_object()

void libMesh::System::attach_assemble_object ( System::Assembly assemble_in)
inherited

Register a user object to use in assembling the system matrix and RHS.

Definition at line 2126 of file system.C.

References libMesh::System::_assemble_system_function, and libMesh::System::_assemble_system_object.

Referenced by main().

2127 {
2128  if (_assemble_system_function != nullptr)
2129  {
2130  libmesh_warning("WARNING: Cannot specify both assembly object and function!");
2131 
2132  _assemble_system_function = nullptr;
2133  }
2134 
2135  _assemble_system_object = &assemble_in;
2136 }
Assembly * _assemble_system_object
Object that assembles the system.
Definition: system.h:2070
void(* _assemble_system_function)(EquationSystems &es, const std::string &name)
Function that assembles the system.
Definition: system.h:2064

◆ attach_constraint_function()

void libMesh::System::attach_constraint_function ( void   fptrEquationSystems &es, const std::string &name)
inherited

Register a user function for imposing constraints.

Definition at line 2140 of file system.C.

References libMesh::System::_constrain_system_function, libMesh::System::_constrain_system_object, fptr(), and libMesh::libmesh_assert().

2142 {
2144 
2145  if (_constrain_system_object != nullptr)
2146  {
2147  libmesh_warning("WARNING: Cannot specify both constraint function and object!");
2148 
2149  _constrain_system_object = nullptr;
2150  }
2151 
2153 }
void(* _constrain_system_function)(EquationSystems &es, const std::string &name)
Function to impose constraints.
Definition: system.h:2075
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)

◆ attach_constraint_object()

void libMesh::System::attach_constraint_object ( System::Constraint constrain)
inherited

Register a user object for imposing constraints.

Definition at line 2157 of file system.C.

References libMesh::System::_constrain_system_function, and libMesh::System::_constrain_system_object.

Referenced by DofMapTest::testConstraintLoopDetection().

2158 {
2159  if (_constrain_system_function != nullptr)
2160  {
2161  libmesh_warning("WARNING: Cannot specify both constraint object and function!");
2162 
2163  _constrain_system_function = nullptr;
2164  }
2165 
2166  _constrain_system_object = &constrain;
2167 }
void(* _constrain_system_function)(EquationSystems &es, const std::string &name)
Function to impose constraints.
Definition: system.h:2075
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081

◆ attach_init_function()

void libMesh::System::attach_init_function ( void   fptrEquationSystems &es, const std::string &name)
inherited

Register a user function to use in initializing the system.

Definition at line 2078 of file system.C.

References libMesh::System::_init_system_function, libMesh::System::_init_system_object, fptr(), and libMesh::libmesh_assert().

Referenced by main().

2080 {
2082 
2083  if (_init_system_object != nullptr)
2084  {
2085  libmesh_warning("WARNING: Cannot specify both initialization function and object!");
2086 
2087  _init_system_object = nullptr;
2088  }
2089 
2091 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)
Initialization * _init_system_object
Object that initializes the system.
Definition: system.h:2059
void(* _init_system_function)(EquationSystems &es, const std::string &name)
Function that initializes the system.
Definition: system.h:2053

◆ attach_init_object()

void libMesh::System::attach_init_object ( System::Initialization init_in)
inherited

Register a user class to use to initialize the system.

Note
This is exclusive with the attach_init_function.

Definition at line 2095 of file system.C.

References libMesh::System::_init_system_function, and libMesh::System::_init_system_object.

2096 {
2097  if (_init_system_function != nullptr)
2098  {
2099  libmesh_warning("WARNING: Cannot specify both initialization object and function!");
2100 
2101  _init_system_function = nullptr;
2102  }
2103 
2104  _init_system_object = &init_in;
2105 }
Initialization * _init_system_object
Object that initializes the system.
Definition: system.h:2059
void(* _init_system_function)(EquationSystems &es, const std::string &name)
Function that initializes the system.
Definition: system.h:2053

◆ attach_QOI_derivative()

void libMesh::System::attach_QOI_derivative ( void   fptrEquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
inherited

Register a user function for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs.

Definition at line 2214 of file system.C.

References libMesh::System::_qoi_evaluate_derivative_function, libMesh::System::_qoi_evaluate_derivative_object, fptr(), and libMesh::libmesh_assert().

2216 {
2218 
2219  if (_qoi_evaluate_derivative_object != nullptr)
2220  {
2221  libmesh_warning("WARNING: Cannot specify both QOI derivative function and object!");
2222 
2224  }
2225 
2227 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
QOIDerivative * _qoi_evaluate_derivative_object
Object to compute derivatives of quantities of interest.
Definition: system.h:2107
libmesh_assert(ctx)
void(* _qoi_evaluate_derivative_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
Function to evaluate quantity of interest derivative.
Definition: system.h:2098

◆ attach_QOI_derivative_object()

void libMesh::System::attach_QOI_derivative_object ( QOIDerivative qoi_derivative)
inherited

Register a user object for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs.

Definition at line 2231 of file system.C.

References libMesh::System::_qoi_evaluate_derivative_function, and libMesh::System::_qoi_evaluate_derivative_object.

2232 {
2233  if (_qoi_evaluate_derivative_function != nullptr)
2234  {
2235  libmesh_warning("WARNING: Cannot specify both QOI derivative object and function!");
2236 
2238  }
2239 
2240  _qoi_evaluate_derivative_object = &qoi_derivative;
2241 }
QOIDerivative * _qoi_evaluate_derivative_object
Object to compute derivatives of quantities of interest.
Definition: system.h:2107
void(* _qoi_evaluate_derivative_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
Function to evaluate quantity of interest derivative.
Definition: system.h:2098

◆ attach_QOI_function()

void libMesh::System::attach_QOI_function ( void   fptrEquationSystems &es, const std::string &name, const QoISet &qoi_indices)
inherited

Register a user function for evaluating the quantities of interest, whose values should be placed in System::qoi.

Definition at line 2182 of file system.C.

References libMesh::System::_qoi_evaluate_function, libMesh::System::_qoi_evaluate_object, fptr(), and libMesh::libmesh_assert().

2185 {
2187 
2188  if (_qoi_evaluate_object != nullptr)
2189  {
2190  libmesh_warning("WARNING: Cannot specify both QOI function and object!");
2191 
2192  _qoi_evaluate_object = nullptr;
2193  }
2194 
2196 }
void(* _qoi_evaluate_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices)
Function to evaluate quantity of interest.
Definition: system.h:2086
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)
QOI * _qoi_evaluate_object
Object to compute quantities of interest.
Definition: system.h:2093

◆ attach_QOI_object()

void libMesh::System::attach_QOI_object ( QOI qoi)
inherited

Register a user object for evaluating the quantities of interest, whose values should be placed in System::qoi.

Definition at line 2200 of file system.C.

References libMesh::System::_qoi_evaluate_function, and libMesh::System::_qoi_evaluate_object.

2201 {
2202  if (_qoi_evaluate_function != nullptr)
2203  {
2204  libmesh_warning("WARNING: Cannot specify both QOI object and function!");
2205 
2206  _qoi_evaluate_function = nullptr;
2207  }
2208 
2209  _qoi_evaluate_object = &qoi_in;
2210 }
void(* _qoi_evaluate_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices)
Function to evaluate quantity of interest.
Definition: system.h:2086
QOI * _qoi_evaluate_object
Object to compute quantities of interest.
Definition: system.h:2093

◆ attach_shell_matrix()

void libMesh::LinearImplicitSystem::attach_shell_matrix ( ShellMatrix< Number > *  shell_matrix)
inherited

This function enables the user to provide a shell matrix, i.e.

a matrix that is not stored element-wise, but as a function. When you register your shell matrix using this function, calling solve() will no longer use the matrix member but the registered shell matrix instead. You can reset this behaviour to its original state by supplying a nullptr to this function.

Definition at line 157 of file linear_implicit_system.C.

References libMesh::LinearImplicitSystem::_shell_matrix.

Referenced by libMesh::LinearImplicitSystem::detach_shell_matrix(), and main().

158 {
159  _shell_matrix = shell_matrix;
160 }
ShellMatrix< Number > * _shell_matrix
User supplies shell matrix or nullptr if no shell matrix is used.

◆ boundary_project_solution() [1/2]

void libMesh::System::boundary_project_solution ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr 
)
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary boundary function onto the solution via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Definition at line 1244 of file system_projection.C.

Referenced by SystemsTest::testBoundaryProjectCube().

1248 {
1249  this->boundary_project_vector(b, variables, *solution, f, g);
1250 
1251  solution->localize(*current_local_solution);
1252 }
void boundary_project_vector(const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary boundary functions onto a vector of degree of freedom values for the current syste...
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585

◆ boundary_project_solution() [2/2]

void libMesh::System::boundary_project_solution ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters 
)
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects components of an arbitrary boundary function onto the solution via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Definition at line 1227 of file system_projection.C.

References fptr(), and gptr().

1232 {
1233  WrappedFunction<Number> f(*this, fptr, &parameters);
1234  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1235  this->boundary_project_solution(b, variables, &f, &g);
1236 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95
void boundary_project_solution(const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr)
Projects arbitrary boundary functions onto a vector of degree of freedom values for the current syste...

◆ boundary_project_vector() [1/2]

void libMesh::System::boundary_project_vector ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
NumericVector< Number > &  new_vector,
FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1280 of file system_projection.C.

References libMesh::NumericVector< T >::close(), libMesh::libmesh_ignore(), and libMesh::Threads::parallel_for().

1286 {
1287  LOG_SCOPE ("boundary_project_vector()", "System");
1288 
1290  (ConstElemRange (this->get_mesh().active_local_elements_begin(),
1291  this->get_mesh().active_local_elements_end() ),
1292  BoundaryProjectSolution(b, variables, *this, f, g,
1293  this->get_equation_systems().parameters,
1294  new_vector)
1295  );
1296 
1297  // We don't do SCALAR dofs when just projecting the boundary, so
1298  // we're done here.
1299 
1300  new_vector.close();
1301 
1302 #ifdef LIBMESH_ENABLE_CONSTRAINTS
1303  if (is_adjoint == -1)
1304  this->get_dof_map().enforce_constraints_exactly(*this, &new_vector);
1305  else if (is_adjoint >= 0)
1307  is_adjoint);
1308 #else
1309  libmesh_ignore(is_adjoint);
1310 #endif
1311 }
void parallel_for(const Range &range, const Body &body)
Execute the provided function object in parallel on the specified range.
Definition: threads_none.h:73
const EquationSystems & get_equation_systems() const
Definition: system.h:730
const MeshBase & get_mesh() const
Definition: system.h:2277
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
void enforce_adjoint_constraints_exactly(NumericVector< Number > &v, unsigned int q) const
Heterogeneously constrains the numeric vector v, which represents an adjoint solution defined on the ...
Definition: dof_map.h:2278
void libmesh_ignore(const Args &...)
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
const DofMap & get_dof_map() const
Definition: system.h:2293
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274

◆ boundary_project_vector() [2/2]

void libMesh::System::boundary_project_vector ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters,
NumericVector< Number > &  new_vector,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary boundary function via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1262 of file system_projection.C.

References fptr(), and gptr().

1269 {
1270  WrappedFunction<Number> f(*this, fptr, &parameters);
1271  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1272  this->boundary_project_vector(b, variables, new_vector, &f, &g,
1273  is_adjoint);
1274 }
void boundary_project_vector(const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary boundary functions onto a vector of degree of freedom values for the current syste...
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95

◆ broadcast_parameters()

void libMesh::RBConstructionBase< LinearImplicitSystem >::broadcast_parameters ( const unsigned int  proc_id)
inherited

Broadcasts parameters from processor proc_id to all processors.

This broadcasts the RBParameters object from .get_parameters(), and then sets it on all processors with .set_parameters().

Definition at line 712 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::compute_max_error_bound().

713 {
714  libmesh_assert_less (proc_id, this->n_processors());
715 
716  // create a copy of the current parameters
717  RBParameters current_parameters = get_parameters();
718  libmesh_error_msg_if(current_parameters.n_samples()!=1,
719  "Only single-sample RBParameter objects can be broadcast.");
720 
721  // Serialize the current_parameters to current_parameters_vector in order to broadcast.
722  // We handle multiple samples and vector values.
723  // However, the vector values are assumed to remain the same size across samples.
724  const std::size_t nparams = current_parameters.n_parameters();
725  const std::size_t nsamples = current_parameters.n_samples();
726 
727  // First we get the sizes of all the parameter value vectors.
728  std::vector<std::size_t> param_value_sizes;
729  param_value_sizes.reserve(nparams);
730  for (const auto & pr : current_parameters)
731  param_value_sizes.push_back(pr.second[0].size());
732 
733  // Broadcast the sizes vector and reserve memory.
734  this->comm().broadcast(param_value_sizes, proc_id);
735  std::size_t buffsize = std::accumulate(param_value_sizes.cbegin(), param_value_sizes.cend(), 0ul);
736  std::vector<Real> serialized_parameters;
737  serialized_parameters.reserve(buffsize);
738 
739  // Then we serialize the parameters/sample/value vectors into a single vector.
740  for (const auto & pr : current_parameters)
741  {
742  for (const auto sample_idx : make_range(nsamples))
743  serialized_parameters.insert(serialized_parameters.end(),
744  pr.second[sample_idx].cbegin(),
745  pr.second[sample_idx].cend());
746  }
747 
748  // Do the broadcasts.
749  this->comm().broadcast(serialized_parameters, proc_id);
750 
751  // Deserialize into the copy of the RBParameters object.
752  std::size_t param_idx = 0;
753  auto val_idx = serialized_parameters.cbegin();
754  for (const auto & pr : current_parameters)
755  {
756  const std::size_t param_value_size = param_value_sizes[param_idx];
757  for (const auto sample_idx: make_range(nsamples))
758  {
759  auto end_val_idx = std::next(val_idx,param_value_size);
760  RBParameter sample_val(val_idx, end_val_idx);
761  current_parameters.set_value(pr.first, sample_idx, sample_val);
762  val_idx = end_val_idx;
763  }
764  ++param_idx;
765  }
766 
767  // Overwrite the parameters globally.
768  set_parameters(current_parameters);
769 }
const Parallel::Communicator & comm() const
processor_id_type n_processors() const
std::vector< Real > RBParameter
Typedef for an individual RB parameter.
Definition: rb_parameters.h:39
const RBParameters & get_parameters() const
Get the current parameters.
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
static const unsigned int next[3]
A lookup table for the increment modulo 3 operation, for iterating through the three nodes per elemen...
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134

◆ build_context()

std::unique_ptr< DGFEMContext > libMesh::RBConstruction::build_context ( )
protectedvirtualinherited

Builds a DGFEMContext object with enough information to do evaluations on each element.

We use DGFEMContext since it allows for both DG and continuous Galerkin formulations.

Definition at line 613 of file rb_construction.C.

Referenced by libMesh::RBConstruction::add_scaled_matrix_and_vector().

614 {
615  return std::make_unique<DGFEMContext>(*this);
616 }

◆ build_zero_dirichlet_boundary_object()

std::unique_ptr< DirichletBoundary > libMesh::RBConstruction::build_zero_dirichlet_boundary_object ( )
staticinherited

It's helpful to be able to generate a DirichletBoundary that stores a ZeroFunction in order to impose Dirichlet boundary conditions.

Definition at line 2454 of file rb_construction.C.

Referenced by SimpleRBConstruction::init_data().

2455 {
2456  ZeroFunction<> zf;
2457 
2458  std::set<boundary_id_type> dirichlet_ids;
2459  std::vector<unsigned int> variables;
2460 
2461  // The DirichletBoundary constructor clones zf, so it's OK that zf is only in local scope
2462  return std::make_unique<DirichletBoundary>(dirichlet_ids, variables, &zf);
2463 }

◆ calculate_norm() [1/2]

Real libMesh::System::calculate_norm ( const NumericVector< Number > &  v,
unsigned int  var,
FEMNormType  norm_type,
std::set< unsigned int > *  skip_dimensions = nullptr 
) const
inherited
Returns
A norm of variable var in the vector v, in the specified norm (e.g. L2, L_INF, H1)

Definition at line 1672 of file system.C.

References libMesh::DISCRETE_L1, libMesh::DISCRETE_L2, libMesh::DISCRETE_L_INF, libMesh::System::discrete_var_norm(), libMesh::L2, libMesh::System::n_vars(), and libMesh::Real.

Referenced by libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::AdaptiveTimeSolver::calculate_norm(), libMesh::UnsteadySolver::du(), main(), output_norms(), and MeshInputTest::testProjectionRegression().

1676 {
1677  //short circuit to save time
1678  if (norm_type == DISCRETE_L1 ||
1679  norm_type == DISCRETE_L2 ||
1680  norm_type == DISCRETE_L_INF)
1681  return discrete_var_norm(v,var,norm_type);
1682 
1683  // Not a discrete norm
1684  std::vector<FEMNormType> norms(this->n_vars(), L2);
1685  std::vector<Real> weights(this->n_vars(), 0.0);
1686  norms[var] = norm_type;
1687  weights[var] = 1.0;
1688  Real val = this->calculate_norm(v, SystemNorm(norms, weights), skip_dimensions);
1689  return val;
1690 }
Real calculate_norm(const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type, std::set< unsigned int > *skip_dimensions=nullptr) const
Definition: system.C:1672
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Real discrete_var_norm(const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type) const
Finds the discrete norm for the entries in the vector corresponding to Dofs associated with var...
Definition: system.C:1653
unsigned int n_vars() const
Definition: system.h:2349

◆ calculate_norm() [2/2]

Real libMesh::System::calculate_norm ( const NumericVector< Number > &  v,
const SystemNorm norm,
std::set< unsigned int > *  skip_dimensions = nullptr 
) const
inherited
Returns
A norm of the vector v, using component_norm and component_scale to choose and weight the norms of each variable.

Definition at line 1694 of file system.C.

References libMesh::System::_dof_map, libMesh::System::_mesh, libMesh::FEGenericBase< OutputType >::build(), libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::FEType::default_quadrature_rule(), dim, libMesh::DISCRETE_L1, libMesh::DISCRETE_L2, libMesh::DISCRETE_L_INF, libMesh::System::discrete_var_norm(), libMesh::DofMap::dof_indices(), libMesh::MeshBase::elem_dimensions(), libMesh::Utility::enum_to_string(), libMesh::FEInterface::field_type(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::GHOSTED, libMesh::H1, libMesh::H1_SEMINORM, libMesh::H2, libMesh::H2_SEMINORM, libMesh::L1, libMesh::NumericVector< T >::l1_norm(), libMesh::L2, libMesh::NumericVector< T >::l2_norm(), libMesh::L_INF, libMesh::libmesh_assert(), libMesh::NumericVector< T >::linfty_norm(), libMesh::NumericVector< T >::local_size(), libMesh::NumericVector< T >::localize(), libMesh::make_range(), TIMPI::Communicator::max(), libMesh::System::n_vars(), libMesh::TensorTools::norm(), libMesh::TensorTools::norm_sq(), libMesh::Real, libMesh::NumericVector< T >::size(), std::sqrt(), TIMPI::Communicator::sum(), libMesh::TYPE_SCALAR, libMesh::TYPE_VECTOR, libMesh::DofMap::variable_type(), libMesh::W1_INF_SEMINORM, libMesh::W2_INF_SEMINORM, and libMesh::SystemNorm::weight().

1697 {
1698  // This function must be run on all processors at once
1699  parallel_object_only();
1700 
1701  LOG_SCOPE ("calculate_norm()", "System");
1702 
1703  // Zero the norm before summation
1704  Real v_norm = 0.;
1705 
1706  if (norm.is_discrete())
1707  {
1708  //Check to see if all weights are 1.0 and all types are equal
1709  FEMNormType norm_type0 = norm.type(0);
1710  unsigned int check_var = 0, check_end = this->n_vars();
1711  for (; check_var != check_end; ++check_var)
1712  if ((norm.weight(check_var) != 1.0) || (norm.type(check_var) != norm_type0))
1713  break;
1714 
1715  //All weights were 1.0 so just do the full vector discrete norm
1716  if (check_var == this->n_vars())
1717  {
1718  if (norm_type0 == DISCRETE_L1)
1719  return v.l1_norm();
1720  if (norm_type0 == DISCRETE_L2)
1721  return v.l2_norm();
1722  if (norm_type0 == DISCRETE_L_INF)
1723  return v.linfty_norm();
1724  else
1725  libmesh_error_msg("Invalid norm_type0 = " << Utility::enum_to_string(norm_type0));
1726  }
1727 
1728  for (auto var : make_range(this->n_vars()))
1729  {
1730  // Skip any variables we don't need to integrate
1731  if (norm.weight(var) == 0.0)
1732  continue;
1733 
1734  v_norm += norm.weight(var) * discrete_var_norm(v, var, norm.type(var));
1735  }
1736 
1737  return v_norm;
1738  }
1739 
1740  // Localize the potentially parallel vector
1741  std::unique_ptr<NumericVector<Number>> local_v = NumericVector<Number>::build(this->comm());
1742  local_v->init(v.size(), v.local_size(), _dof_map->get_send_list(),
1743  true, GHOSTED);
1744  v.localize (*local_v, _dof_map->get_send_list());
1745 
1746  // I'm not sure how best to mix Hilbert norms on some variables (for
1747  // which we'll want to square then sum then square root) with norms
1748  // like L_inf (for which we'll just want to take an absolute value
1749  // and then sum).
1750  bool using_hilbert_norm = true,
1751  using_nonhilbert_norm = true;
1752 
1753  // Loop over all variables
1754  for (auto var : make_range(this->n_vars()))
1755  {
1756  // Skip any variables we don't need to integrate
1757  Real norm_weight_sq = norm.weight_sq(var);
1758  if (norm_weight_sq == 0.0)
1759  continue;
1760  Real norm_weight = norm.weight(var);
1761 
1762  // Check for unimplemented norms (rather than just returning 0).
1763  FEMNormType norm_type = norm.type(var);
1764  if ((norm_type==H1) ||
1765  (norm_type==H2) ||
1766  (norm_type==L2) ||
1767  (norm_type==H1_SEMINORM) ||
1768  (norm_type==H2_SEMINORM))
1769  {
1770  if (!using_hilbert_norm)
1771  libmesh_not_implemented();
1772  using_nonhilbert_norm = false;
1773  }
1774  else if ((norm_type==L1) ||
1775  (norm_type==L_INF) ||
1776  (norm_type==W1_INF_SEMINORM) ||
1777  (norm_type==W2_INF_SEMINORM))
1778  {
1779  if (!using_nonhilbert_norm)
1780  libmesh_not_implemented();
1781  using_hilbert_norm = false;
1782  }
1783  else
1784  libmesh_not_implemented();
1785 
1786  const FEType & fe_type = this->get_dof_map().variable_type(var);
1787 
1788  // Allow space for dims 0-3, and for both scalar and vector
1789  // elements, even if we don't use them all
1790  std::vector<std::unique_ptr<FEBase>> fe_ptrs(4);
1791  std::vector<std::unique_ptr<FEVectorBase>> vec_fe_ptrs(4);
1792  std::vector<std::unique_ptr<QBase>> q_rules(4);
1793 
1794  const std::set<unsigned char> & elem_dims = _mesh.elem_dimensions();
1795 
1796  // Prepare finite elements for each dimension present in the mesh
1797  for (const auto & dim : elem_dims)
1798  {
1799  if (skip_dimensions && skip_dimensions->find(dim) != skip_dimensions->end())
1800  continue;
1801 
1802  // Construct quadrature and finite element objects
1803  q_rules[dim] = fe_type.default_quadrature_rule (dim);
1804 
1805  const FEFieldType field_type = FEInterface::field_type(fe_type);
1806  if (field_type == TYPE_SCALAR)
1807  {
1808  fe_ptrs[dim] = FEBase::build(dim, fe_type);
1809  fe_ptrs[dim]->attach_quadrature_rule (q_rules[dim].get());
1810  }
1811  else
1812  {
1813  vec_fe_ptrs[dim] = FEVectorBase::build(dim, fe_type);
1814  vec_fe_ptrs[dim]->attach_quadrature_rule (q_rules[dim].get());
1815  libmesh_assert_equal_to(field_type, TYPE_VECTOR);
1816  }
1817 
1818  }
1819 
1820  std::vector<dof_id_type> dof_indices;
1821 
1822  // Begin the loop over the elements
1823  for (const auto & elem : this->get_mesh().active_local_element_ptr_range())
1824  {
1825  const unsigned int dim = elem->dim();
1826 
1827  // One way for implementing this would be to exchange the fe with the FEInterface- class.
1828  // However, it needs to be discussed whether integral-norms make sense for infinite elements.
1829  // or in which sense they could make sense.
1830  if (elem->infinite() )
1831  libmesh_not_implemented();
1832 
1833  if (skip_dimensions && skip_dimensions->find(dim) != skip_dimensions->end())
1834  continue;
1835 
1836  QBase * qrule = q_rules[dim].get();
1837  libmesh_assert(qrule);
1838 
1839  this->get_dof_map().dof_indices (elem, dof_indices, var);
1840 
1841  auto element_calculation = [&dof_indices, &elem,
1842  norm_type, norm_weight, norm_weight_sq, &qrule,
1843  &local_v, &v_norm](auto & fe) {
1844  typedef typename std::remove_reference<decltype(fe)>::type::OutputShape OutputShape;
1845  typedef typename TensorTools::MakeNumber<OutputShape>::type OutputNumberShape;
1846  typedef typename std::remove_reference<decltype(fe)>::type::OutputGradient OutputGradient;
1847  typedef typename TensorTools::MakeNumber<OutputGradient>::type OutputNumberGradient;
1848 
1849  const std::vector<Real> & JxW = fe.get_JxW();
1850  const std::vector<std::vector<OutputShape>> * phi = nullptr;
1851  if (norm_type == H1 ||
1852  norm_type == H2 ||
1853  norm_type == L2 ||
1854  norm_type == L1 ||
1855  norm_type == L_INF)
1856  phi = &(fe.get_phi());
1857 
1858  const std::vector<std::vector<OutputGradient>> * dphi = nullptr;
1859  if (norm_type == H1 ||
1860  norm_type == H2 ||
1861  norm_type == H1_SEMINORM ||
1862  norm_type == W1_INF_SEMINORM)
1863  dphi = &(fe.get_dphi());
1864 
1865 #ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
1866  typedef typename std::remove_reference<decltype(fe)>::type::OutputTensor OutputTensor;
1867 
1868  const std::vector<std::vector<OutputTensor>> * d2phi = nullptr;
1869  if (norm_type == H2 ||
1870  norm_type == H2_SEMINORM ||
1871  norm_type == W2_INF_SEMINORM)
1872  d2phi = &(fe.get_d2phi());
1873 #endif
1874 
1875  fe.reinit (elem);
1876 
1877  const unsigned int n_qp = qrule->n_points();
1878 
1879  const unsigned int n_sf = cast_int<unsigned int>
1880  (dof_indices.size());
1881 
1882  // Begin the loop over the Quadrature points.
1883  for (unsigned int qp=0; qp<n_qp; qp++)
1884  {
1885  if (norm_type == L1)
1886  {
1887  OutputNumberShape u_h = 0.;
1888  for (unsigned int i=0; i != n_sf; ++i)
1889  u_h += (*phi)[i][qp] * (*local_v)(dof_indices[i]);
1890  v_norm += norm_weight *
1891  JxW[qp] * TensorTools::norm(u_h);
1892  }
1893 
1894  if (norm_type == L_INF)
1895  {
1896  OutputNumberShape u_h = 0.;
1897  for (unsigned int i=0; i != n_sf; ++i)
1898  u_h += (*phi)[i][qp] * (*local_v)(dof_indices[i]);
1899  v_norm = std::max(v_norm, norm_weight * TensorTools::norm(u_h));
1900  }
1901 
1902  if (norm_type == H1 ||
1903  norm_type == H2 ||
1904  norm_type == L2)
1905  {
1906  OutputNumberShape u_h = 0.;
1907  for (unsigned int i=0; i != n_sf; ++i)
1908  u_h += (*phi)[i][qp] * (*local_v)(dof_indices[i]);
1909  v_norm += norm_weight_sq *
1910  JxW[qp] * TensorTools::norm_sq(u_h);
1911  }
1912 
1913  if (norm_type == H1 ||
1914  norm_type == H2 ||
1915  norm_type == H1_SEMINORM)
1916  {
1917  OutputNumberGradient grad_u_h;
1918  for (unsigned int i=0; i != n_sf; ++i)
1919  grad_u_h.add_scaled((*dphi)[i][qp], (*local_v)(dof_indices[i]));
1920  v_norm += norm_weight_sq *
1921  JxW[qp] * grad_u_h.norm_sq();
1922  }
1923 
1924  if (norm_type == W1_INF_SEMINORM)
1925  {
1926  OutputNumberGradient grad_u_h;
1927  for (unsigned int i=0; i != n_sf; ++i)
1928  grad_u_h.add_scaled((*dphi)[i][qp], (*local_v)(dof_indices[i]));
1929  v_norm = std::max(v_norm, norm_weight * grad_u_h.norm());
1930  }
1931 
1932 #ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
1933  typedef typename TensorTools::MakeNumber<OutputTensor>::type OutputNumberTensor;
1934 
1935  if (norm_type == H2 ||
1936  norm_type == H2_SEMINORM)
1937  {
1938  OutputNumberTensor hess_u_h;
1939  for (unsigned int i=0; i != n_sf; ++i)
1940  hess_u_h.add_scaled((*d2phi)[i][qp], (*local_v)(dof_indices[i]));
1941  v_norm += norm_weight_sq *
1942  JxW[qp] * hess_u_h.norm_sq();
1943  }
1944 
1945  if (norm_type == W2_INF_SEMINORM)
1946  {
1947  OutputNumberTensor hess_u_h;
1948  for (unsigned int i=0; i != n_sf; ++i)
1949  hess_u_h.add_scaled((*d2phi)[i][qp], (*local_v)(dof_indices[i]));
1950  v_norm = std::max(v_norm, norm_weight * hess_u_h.norm());
1951  }
1952 #endif
1953  }
1954  };
1955 
1956  FEBase * scalar_fe = fe_ptrs[dim].get();
1957  FEVectorBase * vec_fe = vec_fe_ptrs[dim].get();
1958 
1959  if (scalar_fe)
1960  {
1961  libmesh_assert(!vec_fe);
1962  element_calculation(*scalar_fe);
1963  }
1964 
1965  if (vec_fe)
1966  {
1967  libmesh_assert(!scalar_fe);
1968  element_calculation(*vec_fe);
1969  }
1970  }
1971  }
1972 
1973  if (using_hilbert_norm)
1974  {
1975  this->comm().sum(v_norm);
1976  v_norm = std::sqrt(v_norm);
1977  }
1978  else
1979  {
1980  this->comm().max(v_norm);
1981  }
1982 
1983  return v_norm;
1984 }
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
Fills the vector di with the global degree of freedom indices for the element.
Definition: dof_map.C:1992
unsigned int dim
virtual numeric_index_type size() const =0
const FEType & variable_type(const unsigned int c) const
Definition: dof_map.h:2144
void sum(T &r) const
static FEFieldType field_type(const FEType &fe_type)
FEMNormType
defines an enum for norms defined on vectors of finite element coefficients
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
const Parallel::Communicator & comm() const
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
FEGenericBase< RealGradient > FEVectorBase
Definition: fe_base.h:818
const MeshBase & get_mesh() const
Definition: system.h:2277
virtual Real l2_norm() const =0
static std::unique_ptr< FEGenericBase > build(const unsigned int dim, const FEType &type)
Builds a specific finite element type.
libmesh_assert(ctx)
const std::set< unsigned char > & elem_dimensions() const
Definition: mesh_base.h:276
auto norm(const T &a) -> decltype(std::abs(a))
Definition: tensor_tools.h:74
FEGenericBase< Real > FEBase
virtual Real l1_norm() const =0
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
std::string enum_to_string(const T e)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void max(const T &r, T &o, Request &req) const
auto norm_sq(const T &a) -> decltype(std::norm(a))
Definition: tensor_tools.h:104
virtual numeric_index_type local_size() const =0
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
Real discrete_var_norm(const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type) const
Finds the discrete norm for the entries in the vector corresponding to Dofs associated with var...
Definition: system.C:1653
unsigned int n_vars() const
Definition: system.h:2349
const DofMap & get_dof_map() const
Definition: system.h:2293
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125
virtual Real linfty_norm() const =0
virtual void localize(std::vector< T > &v_local) const =0
Creates a copy of the global vector in the local vector v_local.
FEFieldType
defines an enum for finite element field types - i.e.

◆ can_add_matrices()

bool libMesh::System::can_add_matrices ( ) const
inlineprotectedinherited
Returns
Whether or not matrices can still be added without expensive per-matrix initialization.

Definition at line 1914 of file system.h.

References libMesh::System::_matrices_initialized.

Referenced by libMesh::EigenSystem::set_eigenproblem_type().

1914 { return !_matrices_initialized; }
bool _matrices_initialized
false when additional matrices being added require initialization, true otherwise.
Definition: system.h:2191

◆ check_convergence()

void libMesh::RBConstruction::check_convergence ( LinearSolver< Number > &  input_solver)
protectedinherited

Check if the linear solver reports convergence.

Throw an error when that is not the case.

Definition at line 2663 of file rb_construction.C.

References libMesh::LinearSolver< T >::get_converged_reason().

Referenced by libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), truth_solve(), libMesh::RBConstruction::truth_solve(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

2664 {
2666 
2667  conv_flag = input_solver.get_converged_reason();
2668 
2669  libmesh_error_msg_if(conv_flag < 0, "Convergence error. Error id: " << conv_flag);
2670 }
LinearConvergenceReason
Linear solver convergence flags (taken from the PETSc flags).
virtual LinearConvergenceReason get_converged_reason() const =0

◆ check_if_zero_truth_solve()

bool libMesh::RBConstruction::check_if_zero_truth_solve ( ) const
virtualinherited
Returns
true if the most recent truth solve gave a zero solution.

Definition at line 444 of file rb_construction.C.

References libMesh::System::solution.

Referenced by libMesh::RBConstruction::train_reduced_basis_with_greedy().

445 {
446  return (solution->l2_norm() == 0.);
447 }
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573

◆ clear()

void TransientRBConstruction::clear ( )
overridevirtual

Clear all the data structures associated with the system.

Reimplemented from libMesh::TransientSystem< RBConstruction >.

Definition at line 85 of file transient_rb_construction.C.

References libMesh::TransientSystem< RBConstruction >::clear(), M_q_vector, non_dirichlet_M_q_vector, libMesh::RBConstruction::store_non_dirichlet_operators, and temporal_data.

86 {
87  Parent::clear();
88 
89  // clear the mass matrices
90  M_q_vector.clear();
91 
94 
95  // clear the temporal_data
96  temporal_data.clear();
97 }
std::vector< std::unique_ptr< SparseMatrix< Number > > > non_dirichlet_M_q_vector
We sometimes also need a second set of M_q matrices that do not have the Dirichlet boundary condition...
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
std::vector< std::unique_ptr< NumericVector< Number > > > temporal_data
Dense matrix to store the data that we use for the temporal POD.
virtual void clear() override
Clear all the data structures associated with the system.
std::vector< std::unique_ptr< SparseMatrix< Number > > > M_q_vector
Vector storing the Q_m matrices from the mass operator.

◆ comm()

const Parallel::Communicator& libMesh::ParallelObject::comm ( ) const
inlineinherited
Returns
A reference to the Parallel::Communicator object used by this mesh.

Definition at line 97 of file parallel_object.h.

References libMesh::ParallelObject::_communicator.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_monitor(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::__libmesh_tao_equality_constraints(), libMesh::__libmesh_tao_equality_constraints_jacobian(), libMesh::__libmesh_tao_gradient(), libMesh::__libmesh_tao_hessian(), libMesh::__libmesh_tao_inequality_constraints(), libMesh::__libmesh_tao_inequality_constraints_jacobian(), libMesh::__libmesh_tao_objective(), libMesh::MeshRefinement::_coarsen_elements(), libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::Partitioner::_find_global_index_by_pid_map(), libMesh::BoundaryInfo::_find_id_maps(), libMesh::SlepcEigenSolver< libMesh::Number >::_petsc_shell_matrix_get_diagonal(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_get_diagonal(), libMesh::SlepcEigenSolver< libMesh::Number >::_petsc_shell_matrix_mult(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_mult(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_mult_add(), libMesh::MeshRefinement::_refine_elements(), libMesh::MeshRefinement::_smooth_flags(), libMesh::DofMap::add_constraints_to_send_list(), add_cube_convex_hull_to_mesh(), libMesh::PetscDMWrapper::add_dofs_helper(), libMesh::PetscDMWrapper::add_dofs_to_section(), add_IC_to_RB_space(), libMesh::EigenSystem::add_matrices(), libMesh::System::add_matrix(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::System::add_variable(), libMesh::System::add_variables(), libMesh::System::add_vector(), libMesh::MeshTools::Modification::all_tri(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::DofMap::allgather_recursive_constraints(), allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), assemble_affine_expansion(), libMesh::FEMSystem::assemble_qoi(), libMesh::Nemesis_IO::assert_symmetric_cmaps(), libMesh::MeshCommunication::assign_global_indices(), libMesh::Partitioner::assign_partitioning(), libMesh::MeshTools::Generation::build_extrusion(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::PetscDMWrapper::build_section(), libMesh::PetscDMWrapper::build_sf(), libMesh::MeshBase::cache_elem_data(), libMesh::System::calculate_norm(), libMesh::DofMap::check_dirichlet_bcid_consistency(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::Nemesis_IO_Helper::compute_num_global_elem_blocks(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::RBSCMConstruction::compute_SCM_bounds_on_training_set(), libMesh::DofMap::computed_sparsity_already(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::ContinuationSystem::ContinuationSystem(), libMesh::MeshBase::copy_constraint_rows(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::MeshTools::create_bounding_box(), libMesh::DofMap::create_dof_constraints(), libMesh::MeshTools::create_nodal_bounding_box(), libMesh::MeshRefinement::create_parent_error_vector(), libMesh::MeshTools::create_processor_bounding_box(), libMesh::MeshTools::create_subdomain_bounding_box(), libMesh::PetscMatrix< libMesh::Number >::create_submatrix_nosort(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::RBEIMEvaluation::distribute_bfs(), libMesh::DofMap::distribute_dofs(), DMlibMeshFunction(), DMlibMeshJacobian(), DMlibMeshSetSystem_libMesh(), DMVariableBounds_libMesh(), libMesh::DTKSolutionTransfer::DTKSolutionTransfer(), libMesh::MeshRefinement::eliminate_unrefined_patches(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_nodes(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), enrich_RB_space(), libMesh::EpetraVector< T >::EpetraVector(), AssembleOptimization::equality_constraints(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::MeshRefinement::flag_elements_by_elem_fraction(), libMesh::MeshRefinement::flag_elements_by_error_fraction(), libMesh::MeshRefinement::flag_elements_by_error_tolerance(), libMesh::MeshRefinement::flag_elements_by_mean_stddev(), libMesh::MeshRefinement::flag_elements_by_nelem_target(), libMesh::RBEIMEvaluation::gather_bfs(), libMesh::DofMap::gather_constraints(), libMesh::MeshfreeInterpolation::gather_remote_data(), libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::RBEIMEvaluation::get_eim_basis_function_node_value(), libMesh::RBEIMEvaluation::get_eim_basis_function_side_value(), libMesh::RBEIMEvaluation::get_eim_basis_function_value(), libMesh::MeshBase::get_info(), libMesh::System::get_info(), libMesh::DofMap::get_info(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::RBEIMConstruction::get_max_abs_value(), libMesh::RBEIMConstruction::get_node_max_abs_value(), libMesh::RBEIMEvaluation::get_parametrized_function_node_value(), libMesh::RBEIMEvaluation::get_parametrized_function_side_value(), libMesh::RBEIMEvaluation::get_parametrized_function_value(), libMesh::RBEIMConstruction::get_random_point(), AssembleOptimization::inequality_constraints(), AssembleOptimization::inequality_constraints_jacobian(), libMesh::LocationMap< T >::init(), libMesh::TimeSolver::init(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), libMesh::RBEIMConstruction::initialize_parametrized_functions_in_training_set(), libMesh::RBEIMConstruction::inner_product(), integrate_function(), libMesh::MeshTools::libmesh_assert_consistent_distributed(), libMesh::MeshTools::libmesh_assert_consistent_distributed_nodes(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_equal_connectivity(), libMesh::MeshTools::libmesh_assert_equal_points(), libMesh::MeshTools::libmesh_assert_parallel_consistent_new_node_procids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_flags(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_object_ids(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_p_levels(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::MeshTools::libmesh_assert_valid_unique_ids(), libMesh::libmesh_petsc_linesearch_shellfunc(), libMesh::libmesh_petsc_preconditioner_apply(), libMesh::libmesh_petsc_recalculate_monitor(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_interface(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_postcheck(), libMesh::libmesh_petsc_snes_precheck(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::MeshRefinement::limit_level_mismatch_at_edge(), libMesh::MeshRefinement::limit_level_mismatch_at_node(), libMesh::MeshRefinement::limit_overrefined_boundary(), libMesh::MeshRefinement::limit_underrefined_boundary(), libMesh::LinearImplicitSystem::LinearImplicitSystem(), main(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshCommunication::make_elems_parallel_consistent(), libMesh::MeshRefinement::make_flags_parallel_consistent(), libMesh::MeshCommunication::make_new_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_new_nodes_parallel_consistent(), libMesh::MeshCommunication::make_node_bcids_parallel_consistent(), libMesh::MeshCommunication::make_node_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_unique_ids_parallel_consistent(), libMesh::MeshCommunication::make_nodes_parallel_consistent(), libMesh::MeshCommunication::make_p_levels_parallel_consistent(), libMesh::MeshRefinement::make_refinement_compatible(), mass_matrix_scaled_matvec(), libMesh::FEMSystem::mesh_position_set(), libMesh::TriangulatorInterface::MeshedHole::MeshedHole(), LinearElasticityWithContact::move_mesh(), libMesh::DistributedMesh::n_active_elem(), libMesh::MeshTools::n_active_levels(), libMesh::BoundaryInfo::n_boundary_conds(), libMesh::DofMap::n_constrained_dofs(), libMesh::BoundaryInfo::n_edge_conds(), libMesh::CondensedEigenSystem::n_global_non_condensed_dofs(), libMesh::MeshTools::n_levels(), MixedOrderTest::n_neighbor_links(), libMesh::BoundaryInfo::n_nodeset_conds(), libMesh::SparsityPattern::Build::n_nonzeros(), libMesh::MeshTools::n_p_levels(), libMesh::BoundaryInfo::n_shellface_conds(), libMesh::RBEIMEvaluation::node_distribute_bfs(), libMesh::RBEIMEvaluation::node_gather_bfs(), libMesh::RBEIMConstruction::node_inner_product(), libMesh::MeshBase::operator==(), libMesh::DistributedMesh::parallel_max_elem_id(), libMesh::DistributedMesh::parallel_max_node_id(), libMesh::ReplicatedMesh::parallel_max_unique_id(), libMesh::DistributedMesh::parallel_max_unique_id(), libMesh::DistributedMesh::parallel_n_elem(), libMesh::DistributedMesh::parallel_n_nodes(), libMesh::SparsityPattern::Build::parallel_sync(), libMesh::BoundaryInfo::parallel_sync_node_ids(), libMesh::BoundaryInfo::parallel_sync_side_ids(), libMesh::MeshTools::paranoid_n_levels(), libMesh::Partitioner::partition(), libMesh::Partitioner::partition_unpartitioned_elements(), libMesh::petsc_auto_fieldsplit(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::MeshBase::prepare_for_use(), libMesh::DofMap::print_dof_constraints(), libMesh::DofMap::process_mesh_constraint_rows(), libMesh::Partitioner::processor_pairs_to_interface_nodes(), libMesh::InterMeshProjection::project_system_vectors(), FEMParameters::read(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::EquationSystems::read(), libMesh::ExodusII_IO::read_header(), libMesh::CheckpointIO::read_header(), libMesh::XdrIO::read_header(), libMesh::System::read_header(), libMesh::RBEIMEvaluation::read_in_interior_basis_functions(), libMesh::RBEIMEvaluation::read_in_node_basis_functions(), libMesh::RBEIMEvaluation::read_in_side_basis_functions(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_SCALAR_dofs(), libMesh::XdrIO::read_serialized_bc_names(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::XdrIO::read_serialized_nodes(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::XdrIO::read_serialized_subdomain_names(), libMesh::System::read_serialized_vector(), libMesh::Nemesis_IO_Helper::read_var_names_impl(), libMesh::MeshBase::recalculate_n_partitions(), libMesh::MeshRefinement::refine_and_coarsen_elements(), libMesh::DistributedMesh::renumber_dof_objects(), libMesh::DistributedMesh::renumber_nodes_and_elements(), LinearElasticityWithContact::residual_and_jacobian(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), scale_mesh_and_plot(), libMesh::DofMap::scatter_constraints(), libMesh::CheckpointIO::select_split_config(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::send_and_insert_dof_values(), set_error_temporal_data(), libMesh::Partitioner::set_interface_node_processor_ids_BFS(), libMesh::Partitioner::set_interface_node_processor_ids_linear(), libMesh::Partitioner::set_interface_node_processor_ids_petscpartitioner(), libMesh::Partitioner::set_node_processor_ids(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::Partitioner::set_parent_processor_ids(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::PetscDiffSolver::setup_petsc_data(), libMesh::RBEIMEvaluation::side_distribute_bfs(), libMesh::RBEIMEvaluation::side_gather_bfs(), libMesh::RBEIMConstruction::side_inner_product(), libMesh::Partitioner::single_partition(), libMesh::LaplaceMeshSmoother::smooth(), libMesh::split_mesh(), libMesh::RBEIMConstruction::store_eim_solutions_for_training_set(), libMesh::MeshBase::subdomain_ids(), libMesh::BoundaryInfo::sync(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), libMesh::MeshRefinement::test_level_one(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), libMesh::MeshRefinement::test_unflagged(), DofMapTest::testBadElemFECombo(), SystemsTest::testBlockRestrictedVarNDofs(), BoundaryInfoTest::testBoundaryOnChildrenErrors(), MeshInputTest::testExodusIGASidesets(), MeshTriangulationTest::testFoundCenters(), PointLocatorTest::testLocator(), BoundaryInfoTest::testMesh(), PointLocatorTest::testPlanar(), MeshTriangulationTest::testPoly2TriRefinementBase(), SystemsTest::testProjectCubeWithMeshFunction(), BoundaryInfoTest::testRenumber(), CheckpointIOTest::testSplitter(), MeshInputTest::testTetgenIO(), MeshTriangulationTest::testTriangulatorInterp(), MeshTriangulationTest::testTriangulatorMeshedHoles(), libMesh::MeshTools::total_weight(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::Poly2TriTriangulator::triangulate(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), libMesh::MeshRefinement::uniformly_coarsen(), update_RB_initial_condition_all_N(), update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), update_residual_terms(), libMesh::RBConstruction::update_residual_terms(), libMesh::NameBasedIO::write(), libMesh::XdrIO::write(), libMesh::VTKIO::write_nodal_data(), libMesh::RBEIMEvaluation::write_out_interior_basis_functions(), libMesh::RBEIMEvaluation::write_out_node_basis_functions(), libMesh::RBEIMEvaluation::write_out_side_basis_functions(), libMesh::RBEvaluation::write_out_vectors(), write_riesz_representors_to_files(), libMesh::RBConstruction::write_riesz_representors_to_files(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), libMesh::XdrIO::write_serialized_nodesets(), libMesh::RBDataSerialization::RBEvaluationSerialization::write_to_file(), libMesh::RBDataSerialization::TransientRBEvaluationSerialization::write_to_file(), libMesh::RBDataSerialization::RBEIMEvaluationSerialization::write_to_file(), and libMesh::RBDataSerialization::RBSCMEvaluationSerialization::write_to_file().

98  { return _communicator; }
const Parallel::Communicator & _communicator

◆ compare()

bool libMesh::System::compare ( const System other_system,
const Real  threshold,
const bool  verbose 
) const
virtualinherited
Returns
true when the other system contains identical data, up to the given threshold. Outputs some diagnostic info when verbose is set.

Definition at line 601 of file system.C.

References libMesh::System::_is_initialized, libMesh::System::_sys_name, libMesh::System::_vectors, libMesh::System::get_vector(), libMesh::libmesh_assert(), libMesh::System::n_vectors(), libMesh::System::name(), libMesh::out, and libMesh::System::solution.

604 {
605  // we do not care for matrices, but for vectors
607  libmesh_assert (other_system._is_initialized);
608 
609  if (verbose)
610  {
611  libMesh::out << " Systems \"" << _sys_name << "\"" << std::endl;
612  libMesh::out << " comparing matrices not supported." << std::endl;
613  libMesh::out << " comparing names...";
614  }
615 
616  // compare the name: 0 means identical
617  const int name_result = _sys_name.compare(other_system.name());
618  if (verbose)
619  {
620  if (name_result == 0)
621  libMesh::out << " identical." << std::endl;
622  else
623  libMesh::out << " names not identical." << std::endl;
624  libMesh::out << " comparing solution vector...";
625  }
626 
627 
628  // compare the solution: -1 means identical
629  const int solu_result = solution->compare (*other_system.solution.get(),
630  threshold);
631 
632  if (verbose)
633  {
634  if (solu_result == -1)
635  libMesh::out << " identical up to threshold." << std::endl;
636  else
637  libMesh::out << " first difference occurred at index = "
638  << solu_result << "." << std::endl;
639  }
640 
641 
642  // safety check, whether we handle at least the same number
643  // of vectors
644  std::vector<int> ov_result;
645 
646  if (this->n_vectors() != other_system.n_vectors())
647  {
648  if (verbose)
649  {
650  libMesh::out << " Fatal difference. This system handles "
651  << this->n_vectors() << " add'l vectors," << std::endl
652  << " while the other system handles "
653  << other_system.n_vectors()
654  << " add'l vectors." << std::endl
655  << " Aborting comparison." << std::endl;
656  }
657  return false;
658  }
659  else if (this->n_vectors() == 0)
660  {
661  // there are no additional vectors...
662  ov_result.clear ();
663  }
664  else
665  {
666  // compare other vectors
667  for (auto & [vec_name, vec] : _vectors)
668  {
669  if (verbose)
670  libMesh::out << " comparing vector \""
671  << vec_name << "\" ...";
672 
673  // assume they have the same name
674  const NumericVector<Number> & other_system_vector =
675  other_system.get_vector(vec_name);
676 
677  ov_result.push_back(vec->compare(other_system_vector, threshold));
678 
679  if (verbose)
680  {
681  if (ov_result[ov_result.size()-1] == -1)
682  libMesh::out << " identical up to threshold." << std::endl;
683  else
684  libMesh::out << " first difference occurred at" << std::endl
685  << " index = " << ov_result[ov_result.size()-1] << "." << std::endl;
686  }
687  }
688  } // finished comparing additional vectors
689 
690 
691  bool overall_result;
692 
693  // sum up the results
694  if ((name_result==0) && (solu_result==-1))
695  {
696  if (ov_result.size()==0)
697  overall_result = true;
698  else
699  {
700  bool ov_identical;
701  unsigned int n = 0;
702  do
703  {
704  ov_identical = (ov_result[n]==-1);
705  n++;
706  }
707  while (ov_identical && n<ov_result.size());
708  overall_result = ov_identical;
709  }
710  }
711  else
712  overall_result = false;
713 
714  if (verbose)
715  {
716  libMesh::out << " finished comparisons, ";
717  if (overall_result)
718  libMesh::out << "found no differences." << std::endl << std::endl;
719  else
720  libMesh::out << "found differences." << std::endl << std::endl;
721  }
722 
723  return overall_result;
724 }
bool _is_initialized
true when additional vectors and variables do not require immediate initialization, false otherwise.
Definition: system.h:2210
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
unsigned int n_vectors() const
Definition: system.h:2477
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
OStreamProxy out
const std::string _sys_name
A name associated with this system.
Definition: system.h:2130
template class LIBMESH_EXPORT NumericVector< Number >

◆ compute_Fq_representor_innerprods()

void libMesh::RBConstruction::compute_Fq_representor_innerprods ( bool  compute_inner_products = true)
protectedvirtualinherited

Compute the terms that are combined ‘online’ to determine the dual norm of the residual.

Here we compute the terms associated with the right-hand side. These terms are basis independent, hence we separate them from the rest of the calculations that are done in update_residual_terms. By default, inner product terms are also computed, but you can turn this feature off e.g. if you are already reading in that data from files.

Definition at line 2129 of file rb_construction.C.

References libMesh::NumericVector< T >::add(), libMesh::RBConstruction::assert_convergence, libMesh::NumericVector< T >::build(), libMesh::RBConstruction::check_convergence(), libMesh::ParallelObject::comm(), libMesh::LinearImplicitSystem::final_linear_residual(), libMesh::RBConstruction::Fq_representor, libMesh::RBEvaluation::Fq_representor_innerprods, libMesh::RBConstruction::Fq_representor_innerprods, libMesh::RBConstruction::Fq_representor_innerprods_computed, libMesh::RBConstruction::get_Fq(), libMesh::RBThetaExpansion::get_n_F_terms(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::Utility::get_timestamp(), libMesh::RBConstruction::inner_product_matrix, libMesh::RBConstruction::inner_product_solver, libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::RBConstructionBase< LinearImplicitSystem >::is_quiet(), libMesh::libmesh_assert(), libMesh::System::n_dofs(), libMesh::LinearImplicitSystem::n_linear_iterations(), libMesh::System::n_local_dofs(), libMesh::out, libMesh::PARALLEL, libMesh::ExplicitSystem::rhs, libMesh::System::solution, libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::SparseMatrix< T >::vector_mult(), and libMesh::NumericVector< T >::zero().

Referenced by libMesh::RBConstruction::recompute_all_residual_terms(), and libMesh::RBConstruction::train_reduced_basis_with_greedy().

2130 {
2131 
2132  // Skip calculations if we've already computed the Fq_representors
2134  {
2135  // Only log if we get to here
2136  LOG_SCOPE("compute_Fq_representor_innerprods()", "RBConstruction");
2137 
2138  for (unsigned int q_f=0; q_f<get_rb_theta_expansion().get_n_F_terms(); q_f++)
2139  {
2140  if (!Fq_representor[q_f])
2141  {
2143  Fq_representor[q_f]->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
2144  }
2145 
2146  libmesh_assert(Fq_representor[q_f]->size() == this->n_dofs() &&
2147  Fq_representor[q_f]->local_size() == this->n_local_dofs() );
2148 
2149  rhs->zero();
2150  rhs->add(1., *get_Fq(q_f));
2151 
2152  if (!is_quiet())
2153  libMesh::out << "Starting solve q_f=" << q_f
2154  << " in RBConstruction::update_residual_terms() at "
2155  << Utility::get_timestamp() << std::endl;
2156 
2158 
2159  if (assert_convergence)
2161 
2162  if (!is_quiet())
2163  {
2164  libMesh::out << "Finished solve q_f=" << q_f
2165  << " in RBConstruction::update_residual_terms() at "
2166  << Utility::get_timestamp() << std::endl;
2167 
2169  << " iterations, final residual "
2170  << this->final_linear_residual() << std::endl;
2171  }
2172 
2173  *Fq_representor[q_f] = *solution;
2174  }
2175 
2176  if (compute_inner_products)
2177  {
2178  unsigned int q=0;
2179 
2180  for (unsigned int q_f1=0; q_f1<get_rb_theta_expansion().get_n_F_terms(); q_f1++)
2181  {
2183 
2184  for (unsigned int q_f2=q_f1; q_f2<get_rb_theta_expansion().get_n_F_terms(); q_f2++)
2185  {
2187 
2188  q++;
2189  }
2190  }
2191  } // end if (compute_inner_products)
2192 
2194  }
2195 
2197 }
std::vector< Number > Fq_representor_innerprods
Vectors storing the residual representor inner products to be used in computing the residuals online...
std::vector< std::unique_ptr< NumericVector< Number > > > Fq_representor
Vector storing the residual representors associated with the right-hand side.
unsigned int get_n_F_terms() const
Get Q_f, the number of terms in the affine expansion for the right-hand side.
bool assert_convergence
A boolean flag to indicate whether to check for proper convergence after each solve.
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
std::string get_timestamp()
Definition: timestamp.C:37
NumericVector< Number > * rhs
The system matrix.
const Parallel::Communicator & comm() const
bool is_quiet() const
Is the system in quiet mode?
std::unique_ptr< SparseMatrix< Number > > inner_product_matrix
The inner product matrix.
NumericVector< Number > * get_Fq(unsigned int q)
Get a pointer to Fq.
dof_id_type n_local_dofs() const
Definition: system.C:150
std::vector< Number > Fq_representor_innerprods
Vectors storing the residual representor inner products to be used in computing the residuals online...
dof_id_type n_dofs() const
Definition: system.C:113
virtual void zero()=0
Set all entries to zero.
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
virtual void solve_for_matrix_and_rhs(LinearSolver< Number > &input_solver, SparseMatrix< Number > &input_matrix, NumericVector< Number > &input_rhs)
Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side ...
bool Fq_representor_innerprods_computed
A boolean flag to indicate whether or not the Fq representor norms have already been computed — used...
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
unsigned int n_linear_iterations() const
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
void check_convergence(LinearSolver< Number > &input_solver)
Check if the linear solver reports convergence.
std::unique_ptr< LinearSolver< Number > > inner_product_solver
We store an extra linear solver object which we can optionally use for solving all systems in which t...
OStreamProxy out
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
virtual void add(const numeric_index_type i, const T value)=0
Adds value to the vector entry specified by i.

◆ compute_max_error_bound()

Real libMesh::RBConstruction::compute_max_error_bound ( )
virtualinherited

(i) Compute the a posteriori error bound for each set of parameters in the training set, (ii) set current_parameters to the parameters that maximize the error bound, and (iii) return the maximum error bound.

Definition at line 1776 of file rb_construction.C.

References libMesh::RBConstructionBase< LinearImplicitSystem >::broadcast_parameters(), libMesh::ParallelObject::comm(), libMesh::RBConstructionBase< LinearImplicitSystem >::get_first_local_training_index(), libMesh::RBConstructionBase< LinearImplicitSystem >::get_global_max_error_pair(), libMesh::RBConstructionBase< LinearImplicitSystem >::get_last_local_training_index(), libMesh::RBConstructionBase< LinearImplicitSystem >::get_local_n_training_samples(), libMesh::RBParametrized::get_n_params(), libMesh::RBConstruction::get_preevaluate_thetas_flag(), libMesh::RBConstruction::get_RB_error_bound(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::ParallelObject::processor_id(), libMesh::Real, libMesh::RBConstructionBase< LinearImplicitSystem >::serial_training_set, libMesh::RBConstruction::set_current_training_parameter_index(), libMesh::RBConstructionBase< LinearImplicitSystem >::set_params_from_training_set(), TIMPI::Communicator::sum(), and libMesh::RBConstruction::training_error_bounds.

Referenced by libMesh::RBConstruction::train_reduced_basis_with_greedy().

1777 {
1778  LOG_SCOPE("compute_max_error_bound()", "RBConstruction");
1779 
1780  // Treat the case with no parameters in a special way
1781  if (get_n_params() == 0)
1782  {
1783  Real max_val;
1784  if (std::numeric_limits<Real>::has_infinity)
1785  {
1786  max_val = std::numeric_limits<Real>::infinity();
1787  }
1788  else
1789  {
1790  max_val = std::numeric_limits<Real>::max();
1791  }
1792 
1793  // Make sure we do at least one solve, but otherwise return a zero error bound
1794  // when we have no parameters
1795  return (get_rb_evaluation().get_n_basis_functions() == 0) ? max_val : 0.;
1796  }
1797 
1799 
1800  // keep track of the maximum error
1801  unsigned int max_err_index = 0;
1802  Real max_err = 0.;
1803 
1805  for (unsigned int i=0; i<get_local_n_training_samples(); i++)
1806  {
1807  // Load training parameter i, this is only loaded
1808  // locally since the RB solves are local.
1809  set_params_from_training_set( first_index+i );
1810 
1811  // In case we pre-evaluate the theta functions,
1812  // also keep track of the current training parameter index.
1814  set_current_training_parameter_index(first_index+i);
1815 
1816 
1818 
1819  if (training_error_bounds[i] > max_err)
1820  {
1821  max_err_index = i;
1822  max_err = training_error_bounds[i];
1823  }
1824  }
1825 
1826  std::pair<numeric_index_type, Real> error_pair(first_index+max_err_index, max_err);
1827  get_global_max_error_pair(this->comm(),error_pair);
1828 
1829  // If we have a serial training set (i.e. a training set that is the same on all processors)
1830  // just set the parameters on all processors
1831  if (serial_training_set)
1832  {
1833  set_params_from_training_set( error_pair.first );
1834  }
1835  // otherwise, broadcast the parameter that produced the maximum error
1836  else
1837  {
1838  unsigned int root_id=0;
1839  if ((get_first_local_training_index() <= error_pair.first) &&
1840  (error_pair.first < get_last_local_training_index()))
1841  {
1842  set_params_from_training_set( error_pair.first );
1843  root_id = this->processor_id();
1844  }
1845 
1846  this->comm().sum(root_id); // root_id is only non-zero on one processor
1847  broadcast_parameters(root_id);
1848  }
1849 
1850  return error_pair.second;
1851 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
std::vector< Real > training_error_bounds
Vector storing the values of the error bound for each parameter in the training set — the parameter ...
void sum(T &r) const
const Parallel::Communicator & comm() const
static void get_global_max_error_pair(const Parallel::Communicator &communicator, std::pair< numeric_index_type, Real > &error_pair)
Static function to return the error pair (index,error) that is corresponds to the largest error on al...
void broadcast_parameters(const unsigned int proc_id)
Broadcasts parameters from processor proc_id to all processors.
bool get_preevaluate_thetas_flag() const
Get/set flag to pre-evaluate the theta functions.
dof_id_type numeric_index_type
Definition: id_types.h:99
numeric_index_type get_last_local_training_index() const
Get the last local index of the training parameters.
numeric_index_type get_local_n_training_samples() const
Get the total number of training samples local to this processor.
virtual Real get_RB_error_bound()
void set_params_from_training_set(unsigned int global_index)
Set parameters to the RBParameters stored in index global_index of the global training set...
void set_current_training_parameter_index(unsigned int index)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
processor_id_type processor_id() const
unsigned int get_n_params() const
Get the number of parameters.

◆ compute_output_dual_innerprods()

void libMesh::RBConstruction::compute_output_dual_innerprods ( )
protectedvirtualinherited

Compute and store the dual norm of each output functional.

Definition at line 2034 of file rb_construction.C.

References libMesh::NumericVector< T >::add(), libMesh::RBConstruction::assert_convergence, libMesh::NumericVector< T >::build(), libMesh::RBConstruction::check_convergence(), libMesh::ParallelObject::comm(), libMesh::LinearImplicitSystem::final_linear_residual(), libMesh::LinearImplicitSystem::get_linear_solver(), libMesh::RBConstruction::get_matrix_for_output_dual_solves(), libMesh::RBThetaExpansion::get_n_output_terms(), libMesh::RBThetaExpansion::get_n_outputs(), libMesh::RBConstruction::get_output_vector(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::Utility::get_timestamp(), libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::RBConstructionBase< LinearImplicitSystem >::is_quiet(), libMesh::ImplicitSystem::linear_solver, libMesh::System::n_dofs(), libMesh::LinearImplicitSystem::n_linear_iterations(), libMesh::System::n_local_dofs(), libMesh::out, libMesh::RBEvaluation::output_dual_innerprods, libMesh::RBConstruction::output_dual_innerprods, libMesh::RBConstruction::output_dual_innerprods_computed, libMesh::PARALLEL, libMesh::ExplicitSystem::rhs, libMesh::System::solution, libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::SparseMatrix< T >::vector_mult(), and libMesh::NumericVector< T >::zero().

Referenced by libMesh::RBConstruction::train_reduced_basis_with_greedy().

2035 {
2036  // Skip calculations if we've already computed the output dual norms
2038  {
2039  // Short circuit if we don't have any outputs
2040  if (get_rb_theta_expansion().get_n_outputs() == 0)
2041  {
2043  return;
2044  }
2045 
2046  // Only log if we get to here
2047  LOG_SCOPE("compute_output_dual_innerprods()", "RBConstruction");
2048 
2049  libMesh::out << "Compute output dual inner products" << std::endl;
2050 
2051  // Find out the largest value of Q_l
2052  unsigned int max_Q_l = 0;
2053  for (unsigned int n=0; n<get_rb_theta_expansion().get_n_outputs(); n++)
2054  max_Q_l = (get_rb_theta_expansion().get_n_output_terms(n) > max_Q_l) ? get_rb_theta_expansion().get_n_output_terms(n) : max_Q_l;
2055 
2056  std::vector<std::unique_ptr<NumericVector<Number>>> L_q_representor(max_Q_l);
2057  for (unsigned int q=0; q<max_Q_l; q++)
2058  {
2059  L_q_representor[q] = NumericVector<Number>::build(this->comm());
2060  L_q_representor[q]->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
2061  }
2062 
2063  for (unsigned int n=0; n<get_rb_theta_expansion().get_n_outputs(); n++)
2064  {
2065  for (unsigned int q_l=0; q_l<get_rb_theta_expansion().get_n_output_terms(n); q_l++)
2066  {
2067  rhs->zero();
2068  rhs->add(1., *get_output_vector(n,q_l));
2069 
2070  if (!is_quiet())
2071  libMesh::out << "Starting solve n=" << n << ", q_l=" << q_l
2072  << " in RBConstruction::compute_output_dual_innerprods() at "
2073  << Utility::get_timestamp() << std::endl;
2074 
2075  // Use the main linear solver here instead of the inner_product solver, since
2076  // get_matrix_for_output_dual_solves() may not return the inner product matrix.
2078 
2079  // We possibly perform multiple solves here with the same matrix, hence
2080  // set reuse_preconditioner(true) (and set it back to false again below
2081  // at the end of this function).
2082  linear_solver->reuse_preconditioner(true);
2083 
2084  if (assert_convergence)
2086 
2087  if (!is_quiet())
2088  {
2089  libMesh::out << "Finished solve n=" << n << ", q_l=" << q_l
2090  << " in RBConstruction::compute_output_dual_innerprods() at "
2091  << Utility::get_timestamp() << std::endl;
2092 
2094  << " iterations, final residual "
2095  << this->final_linear_residual() << std::endl;
2096  }
2097 
2098  *L_q_representor[q_l] = *solution;
2099  }
2100 
2101  unsigned int q=0;
2102  for (unsigned int q_l1=0; q_l1<get_rb_theta_expansion().get_n_output_terms(n); q_l1++)
2103  {
2105 
2106  for (unsigned int q_l2=q_l1; q_l2<get_rb_theta_expansion().get_n_output_terms(n); q_l2++)
2107  {
2108  output_dual_innerprods[n][q] = L_q_representor[q_l2]->dot(*inner_product_storage_vector);
2109  libMesh::out << "output_dual_innerprods[" << n << "][" << q << "] = " << output_dual_innerprods[n][q] << std::endl;
2110 
2111  q++;
2112  }
2113  }
2114  }
2115 
2116  // We may not need to use linear_solver again (e.g. this would happen if we use
2117  // extra_linear_solver for the truth_solves). As a result, let's clear linear_solver
2118  // to release any memory it may be taking up. If we do need it again, it will
2119  // be initialized when necessary.
2120  linear_solver->clear();
2121  linear_solver->reuse_preconditioner(false);
2122 
2124  }
2125 
2127 }
bool assert_convergence
A boolean flag to indicate whether to check for proper convergence after each solve.
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
std::string get_timestamp()
Definition: timestamp.C:37
std::vector< std::vector< Number > > output_dual_innerprods
The vector storing the dual norm inner product terms for each output.
NumericVector< Number > * rhs
The system matrix.
const Parallel::Communicator & comm() const
bool is_quiet() const
Is the system in quiet mode?
std::vector< std::vector< Number > > output_dual_innerprods
The vector storing the dual norm inner product terms for each output.
virtual LinearSolver< Number > * get_linear_solver() const override
dof_id_type n_local_dofs() const
Definition: system.C:150
unsigned int get_n_outputs() const
Get n_outputs, the number output functionals.
dof_id_type n_dofs() const
Definition: system.C:113
virtual void zero()=0
Set all entries to zero.
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
virtual void solve_for_matrix_and_rhs(LinearSolver< Number > &input_solver, SparseMatrix< Number > &input_matrix, NumericVector< Number > &input_rhs)
Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side ...
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
unsigned int n_linear_iterations() const
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
virtual SparseMatrix< Number > & get_matrix_for_output_dual_solves()
Return the matrix for the output residual dual norm solves.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
unsigned int get_n_output_terms(unsigned int output_index) const
Get the number of affine terms associated with the specified output.
void check_convergence(LinearSolver< Number > &input_solver)
Check if the linear solver reports convergence.
OStreamProxy out
NumericVector< Number > * get_output_vector(unsigned int n, unsigned int q_l)
Get a pointer to the n^th output.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
virtual void add(const numeric_index_type i, const T value)=0
Adds value to the vector entry specified by i.
std::unique_ptr< LinearSolver< Number > > linear_solver
This class handles all the details of interfacing with various linear algebra packages like PETSc or ...
bool output_dual_innerprods_computed
A boolean flag to indicate whether or not the output dual norms have already been computed — used to...

◆ compute_residual_dual_norm_slow()

Real libMesh::RBConstruction::compute_residual_dual_norm_slow ( const unsigned int  N)
inherited

The slow (but simple, non-error prone) way to compute the residual dual norm.

Useful for error checking.

Definition at line 2218 of file rb_construction.C.

References libMesh::RBConstruction::_untransformed_basis_functions, libMesh::SparseMatrix< T >::add(), libMesh::NumericVector< T >::add(), libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBConstruction::inner_product_matrix, libMesh::RBConstruction::inner_product_solver, libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::libmesh_real(), libMesh::ImplicitSystem::matrix, libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, libMesh::ExplicitSystem::rhs, libMesh::System::solution, libMesh::RBConstruction::solve_for_matrix_and_rhs(), std::sqrt(), libMesh::RBConstruction::store_untransformed_basis, libMesh::RBConstruction::truth_assembly(), libMesh::SparseMatrix< T >::vector_mult(), and libMesh::SparseMatrix< T >::zero().

2219 {
2220  LOG_SCOPE("compute_residual_dual_norm_slow()", "RBConstruction");
2221 
2222  // Put the residual in rhs in order to compute the norm of the Riesz representor
2223  // Note that this only works in serial since otherwise each processor will
2224  // have a different parameter value during the Greedy training.
2225 
2226  std::unique_ptr<NumericVector<Number>> RB_sol = NumericVector<Number>::build(comm());
2227  RB_sol->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
2228 
2229  std::unique_ptr<NumericVector<Number>> temp = NumericVector<Number>::build(comm());
2230  temp->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
2231 
2233  {
2234  libmesh_assert_equal_to(_untransformed_basis_functions.size(), get_rb_evaluation().get_n_basis_functions());
2235  }
2236 
2237  for (unsigned int i=0; i<N; i++)
2238  {
2240  {
2241  RB_sol->add(get_rb_evaluation().RB_solution(i), get_rb_evaluation().get_basis_function(i));
2242  }
2243  else
2244  {
2245  RB_sol->add(get_rb_evaluation().RB_solution(i), *_untransformed_basis_functions[i]);
2246  }
2247  }
2248 
2249  this->truth_assembly();
2250  matrix->vector_mult(*temp, *RB_sol);
2251  rhs->add(-1., *temp);
2252 
2253  // Then solve to get the Reisz representor
2254  matrix->zero();
2256 
2259  Number slow_residual_norm_sq = solution->dot(*inner_product_storage_vector);
2260 
2261  return std::sqrt( libmesh_real(slow_residual_norm_sq) );
2262 }
T libmesh_real(T a)
virtual void truth_assembly()
Assemble the truth matrix and right-hand side for current_parameters.
std::vector< std::unique_ptr< NumericVector< Number > > > _untransformed_basis_functions
In cases where we have dof transformations such as a change of coordinates at some nodes we need to s...
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
NumericVector< Number > * rhs
The system matrix.
const Parallel::Communicator & comm() const
std::unique_ptr< SparseMatrix< Number > > inner_product_matrix
The inner product matrix.
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
virtual void add(const numeric_index_type i, const numeric_index_type j, const T value)=0
Add value to the element (i,j).
virtual void solve_for_matrix_and_rhs(LinearSolver< Number > &input_solver, SparseMatrix< Number > &input_matrix, NumericVector< Number > &input_rhs)
Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side ...
virtual void zero()=0
Set all entries to 0.
bool store_untransformed_basis
Boolean flag to indicate whether we store a second copy of the basis without constraints or dof trans...
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
std::unique_ptr< LinearSolver< Number > > inner_product_solver
We store an extra linear solver object which we can optionally use for solving all systems in which t...
SparseMatrix< Number > * matrix
The system matrix.
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
virtual void add(const numeric_index_type i, const T value)=0
Adds value to the vector entry specified by i.

◆ current_solution()

Number libMesh::System::current_solution ( const dof_id_type  global_dof_number) const
inherited
Returns
The current solution for the specified global DOF.

Definition at line 157 of file system.C.

References libMesh::System::_dof_map, and libMesh::System::current_local_solution.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::HPCoarsenTest::add_projection(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::ExactErrorEstimator::estimate_error(), main(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::HPCoarsenTest::select_refinement(), SolidSystem::side_time_derivative(), libMesh::EnsightIO::write_scalar_ascii(), and libMesh::EnsightIO::write_vector_ascii().

158 {
159  // Check the sizes
160  libmesh_assert_less (global_dof_number, _dof_map->n_dofs());
161  libmesh_assert_less (global_dof_number, current_local_solution->size());
162 
163  return (*current_local_solution)(global_dof_number);
164 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585

◆ deactivate()

void libMesh::System::deactivate ( )
inlineinherited

Deactivates the system.

Only active systems are solved.

Definition at line 2325 of file system.h.

References libMesh::System::_active.

2326 {
2327  _active = false;
2328 }
bool _active
Flag stating if the system is active or not.
Definition: system.h:2156

◆ detach_shell_matrix()

void libMesh::LinearImplicitSystem::detach_shell_matrix ( )
inlineinherited

Detaches a shell matrix.

Same as attach_shell_matrix(nullptr).

Definition at line 176 of file linear_implicit_system.h.

References libMesh::LinearImplicitSystem::attach_shell_matrix().

Referenced by main().

176 { attach_shell_matrix(nullptr); }
void attach_shell_matrix(ShellMatrix< Number > *shell_matrix)
This function enables the user to provide a shell matrix, i.e.

◆ disable_cache()

void libMesh::ImplicitSystem::disable_cache ( )
overridevirtualinherited

Avoids use of any cached data that might affect any solve result.

Should be overridden in derived systems.

Reimplemented from libMesh::System.

Definition at line 105 of file implicit_system.C.

References libMesh::System::assemble_before_solve, libMesh::ImplicitSystem::get_linear_solver(), and libMesh::LinearSolver< T >::reuse_preconditioner().

Referenced by libMesh::DifferentiableSystem::pop_physics(), libMesh::DifferentiableSystem::push_physics(), and libMesh::DifferentiableSystem::swap_physics().

105  {
106  this->assemble_before_solve = true;
107  this->get_linear_solver()->reuse_preconditioner(false);
108 }
virtual LinearSolver< Number > * get_linear_solver() const
virtual void reuse_preconditioner(bool)
Set the same_preconditioner flag, which indicates if we reuse the same preconditioner for subsequent ...
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1527

◆ disable_print_counter_info() [1/2]

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 100 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

101 {
102  _enable_print_counter = false;
103  return;
104 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ disable_print_counter_info() [2/2]

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 100 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

101 {
102  _enable_print_counter = false;
103  return;
104 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ enable_print_counter_info() [1/2]

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 94 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

95 {
96  _enable_print_counter = true;
97  return;
98 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ enable_print_counter_info() [2/2]

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 94 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

95 {
96  _enable_print_counter = true;
97  return;
98 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ enrich_basis_from_rhs_terms()

void libMesh::RBConstruction::enrich_basis_from_rhs_terms ( const bool  resize_rb_eval_data = true)
inherited

This function computes one basis function for each rhs term.

This is useful in some cases since we can avoid doing a full greedy if we know that we do not have any "left-hand side" parameters, for example.

Definition at line 1302 of file rb_construction.C.

References libMesh::RBConstruction::assert_convergence, libMesh::RBConstruction::check_convergence(), libMesh::RBConstruction::enrich_RB_space(), libMesh::RBConstruction::extra_linear_solver, libMesh::System::get_equation_systems(), libMesh::RBConstruction::get_Fq(), libMesh::LinearImplicitSystem::get_linear_solver(), libMesh::System::get_mesh(), libMesh::RBThetaExpansion::get_n_F_terms(), libMesh::RBConstruction::get_Nmax(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBParametrized::initialize_parameters(), libMesh::NumericVector< T >::l2_norm(), libMesh::ImplicitSystem::matrix, libMesh::System::name(), libMesh::out, libMesh::RBConstruction::post_process_truth_solution(), libMesh::NumericVector< T >::print_matlab(), libMesh::RBEvaluation::resize_data_structures(), libMesh::ExplicitSystem::rhs, libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::RBConstruction::truth_assembly(), libMesh::RBConstruction::update_system(), and libMesh::MeshOutput< MT >::write_equation_systems().

1303 {
1304  LOG_SCOPE("enrich_basis_from_rhs_terms()", "RBConstruction");
1305 
1306  // initialize rb_eval's parameters
1308 
1309  // possibly resize data structures according to Nmax
1310  if (resize_rb_eval_data)
1311  {
1313  }
1314 
1315  libMesh::out << std::endl << "---- Enriching basis from rhs terms ----" << std::endl;
1316 
1317  truth_assembly();
1318 
1319  for (unsigned int q_f=0; q_f<get_rb_theta_expansion().get_n_F_terms(); q_f++)
1320  {
1321  libMesh::out << std::endl << "Performing truth solve with rhs from rhs term " << q_f << std::endl;
1322 
1323  *rhs = *get_Fq(q_f);
1324 
1325  if (rhs->l2_norm() == 0)
1326  {
1327  // Skip enrichment if the rhs is zero
1328  continue;
1329  }
1330 
1331  // truth_assembly assembles into matrix and rhs, so use those for the solve
1332  if (extra_linear_solver)
1333  {
1334  // If extra_linear_solver has been initialized, then we use it for the
1335  // truth solves.
1337 
1338  if (assert_convergence)
1340  }
1341  else
1342  {
1344 
1345  if (assert_convergence)
1347  }
1348 
1349  // Debugging: enable this code to print the rhs that was used in
1350  // the most recent truth solve to a uniquely-named file.
1351 #if 0
1352  {
1353  char temp_file[] = "truth_rhs_XXXXXX.dat";
1354  int fd = mkstemps(temp_file, 4);
1355  if (fd != -1)
1356  {
1357  libMesh::out << "Writing truth system rhs to file: " << temp_file << std::endl;
1358  rhs->print_matlab(std::string(temp_file));
1359  }
1360  }
1361 #endif // 0
1362 
1363  // Debugging: enable this code to print the most recent truth
1364  // solution to a uniquely-named file.
1365 #ifdef LIBMESH_HAVE_EXODUS_API
1366 #if 0
1367  {
1368  // Note: mkstemps creates a file and returns an open file descriptor to it.
1369  // The filename is created from a template which must have 6 'X' characters followed
1370  // by a suffix having the specified length (in this case 4, for ".exo").
1371  char temp_file[] = "truth_XXXXXX.exo";
1372  int fd = mkstemps(temp_file, 4);
1373  if (fd != -1)
1374  {
1375  libMesh::out << "Writing truth solution to file: " << temp_file << std::endl;
1376  ExodusII_IO exo_io(this->get_mesh());
1377  std::set<std::string> system_names = {this->name()};
1378  exo_io.write_equation_systems(std::string(temp_file),
1379  this->get_equation_systems(), &system_names);
1380  }
1381  }
1382 #endif // 0
1383 #endif // LIBMESH_HAVE_EXODUS_API
1384 
1385  // Call user-defined post-processing routines on the truth solution.
1387 
1388  // Add orthogonal part of the snapshot to the RB space
1389  libMesh::out << "Enriching the RB space" << std::endl;
1390  enrich_RB_space();
1391 
1392  update_system();
1393  }
1394 }
virtual void truth_assembly()
Assemble the truth matrix and right-hand side for current_parameters.
unsigned int get_n_F_terms() const
Get Q_f, the number of terms in the affine expansion for the right-hand side.
bool assert_convergence
A boolean flag to indicate whether to check for proper convergence after each solve.
virtual void resize_data_structures(const unsigned int Nmax, bool resize_error_bound_data=true)
Resize and clear the data vectors corresponding to the value of Nmax.
const EquationSystems & get_equation_systems() const
Definition: system.h:730
NumericVector< Number > * rhs
The system matrix.
virtual LinearSolver< Number > * get_linear_solver() const override
NumericVector< Number > * get_Fq(unsigned int q)
Get a pointer to Fq.
const MeshBase & get_mesh() const
Definition: system.h:2277
virtual void print_matlab(const std::string &="") const
Print the contents of the vector in Matlab&#39;s sparse matrix format.
LinearSolver< Number > * extra_linear_solver
Also, we store a pointer to an extra linear solver.
virtual void solve_for_matrix_and_rhs(LinearSolver< Number > &input_solver, SparseMatrix< Number > &input_matrix, NumericVector< Number > &input_rhs)
Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side ...
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
virtual Real l2_norm() const =0
unsigned int get_Nmax() const
Get/set Nmax, the maximum number of RB functions we are willing to compute.
virtual void update_system()
Update the system after enriching the RB space; this calls a series of functions to update the system...
virtual void post_process_truth_solution()
Similarly, provide an opportunity to post-process the truth solution after the solve is complete...
void check_convergence(LinearSolver< Number > &input_solver)
Check if the linear solver reports convergence.
OStreamProxy out
SparseMatrix< Number > * matrix
The system matrix.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
const std::string & name() const
Definition: system.h:2261
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.
virtual void enrich_RB_space()
Add a new basis function to the RB space.

◆ enrich_RB_space()

void TransientRBConstruction::enrich_RB_space ( )
overrideprotectedvirtual

Add a new basis functions to the RB space.

In the transient case we first perform a POD of the time-dependent "truth" and then add a certain number of POD modes to the reduced basis.

Reimplemented from libMesh::RBConstruction.

Definition at line 757 of file transient_rb_construction.C.

References std::abs(), libMesh::NumericVector< T >::add(), libMesh::RBEvaluation::basis_functions, libMesh::ParallelObject::comm(), libMesh::NumericVector< T >::dot(), libMesh::DenseMatrix< T >::el(), libMesh::RBEvaluation::get_basis_function(), libMesh::RBConstruction::get_delta_N(), libMesh::RBTemporalDiscretization::get_n_time_steps(), libMesh::RBConstruction::get_Nmax(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::NumericVector< T >::init(), libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::libmesh_conj(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::out, libMesh::PARALLEL, POD_tol, libMesh::RBEvaluation::rb_solve(), libMesh::Real, libMesh::NumericVector< T >::scale(), set_delta_N(), std::sqrt(), libMesh::DenseMatrix< T >::svd(), temporal_data, update_system(), libMesh::SparseMatrix< T >::vector_mult(), and libMesh::NumericVector< T >::zero().

758 {
759  // Need SLEPc to get the POD eigenvalues
760  LOG_SCOPE("enrich_RB_space()", "TransientRBConstruction");
761 
762  // With the "method of snapshots", the size of
763  // the eigenproblem is determined by the number
764  // of time-steps (rather than the number of spatial dofs).
765  unsigned int n_snapshots = temporal_data.size();
766  DenseMatrix<Number> correlation_matrix(n_snapshots,n_snapshots);
767  for (unsigned int i=0; i<n_snapshots; i++)
768  {
771 
772  for (unsigned int j=0; j<=i; j++)
773  {
774  // Scale the inner products by the number of time-steps to normalize the
775  // POD energy norm appropriately
776  Number inner_prod = (temporal_data[j]->dot(*inner_product_storage_vector)) /
777  (Real)(get_n_time_steps()+1);
778 
779  correlation_matrix(i,j) = inner_prod;
780  if(i != j)
781  {
782  correlation_matrix(j,i) = libmesh_conj(inner_prod);
783  }
784  }
785  }
786 
787  // The POD can be formulated in terms of either the SVD or an eigenvalue problem.
788  // Here we use the SVD of the correlation matrix to obtain the POD eigenvalues and
789  // eigenvectors.
790  DenseVector<Real> sigma( n_snapshots );
791  DenseMatrix<Number> U( n_snapshots, n_snapshots );
792  DenseMatrix<Number> VT( n_snapshots, n_snapshots );
793  correlation_matrix.svd(sigma, U, VT );
794 
795  libMesh::out << std::endl << "POD singular values:" << std::endl;
796  for (unsigned int i=0; i<=1; i++)
797  {
798  libMesh::out << "singular value " << i << " = " << sigma(i) << std::endl;
799  }
800  libMesh::out << "..." << std::endl;
801  libMesh::out << "last singular value = " << sigma(n_snapshots-1) << std::endl;
802  libMesh::out << std::endl;
803 
804  // Now load the new basis functions
805  unsigned int j = 0;
806  while (true)
807  {
808  // load the new basis function into the basis_functions vector.
810  NumericVector<Number> & current_bf =
811  get_rb_evaluation().get_basis_function(get_rb_evaluation().get_n_basis_functions()-1);
812  current_bf.init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
813  current_bf.zero();
814 
815  // Perform the matrix multiplication of temporal data with
816  // the next POD eigenvector
817  for (unsigned int i=0; i<n_snapshots; i++)
818  {
819  current_bf.add( U.el(i,j), *temporal_data[i] );
820  }
821 
822  // We just set the norm to 1.
824 
825  Real current_bf_norm = std::abs( std::sqrt( current_bf.dot(*inner_product_storage_vector) ) );
826  current_bf.scale(1./current_bf_norm);
827 
828  // Increment j here since we use the incremented counter
829  // in the if clauses below
830  j++;
831 
832  // If positive POD_tol, we use it to determine the number of basis functions
833  // to add, and then break the loop when POD_tol is satisfied, or after Nmax
834  // basis functions have been added. Else we break the loop after delta_N
835  // (or Nmax) new basis functions.
836  if (POD_tol > 0.)
837  {
838  set_delta_N(1);
839 
840  // We need to define the updated RB system matrices before the RB solve
841  update_system();
842  Real error_bound = get_rb_evaluation().rb_solve(get_rb_evaluation().get_n_basis_functions());
843 
844  if ((error_bound <= POD_tol) || (get_rb_evaluation().get_n_basis_functions()==get_Nmax()))
845  {
846  set_delta_N(0);
847  break;
848  }
849  }
850  else
851  {
852  if (j == get_delta_N())
853  {
854  break;
855  }
856  else
857  if (get_rb_evaluation().get_n_basis_functions()==get_Nmax())
858  {
859  set_delta_N(j);
860  break;
861  }
862  }
863  }
864 }
T libmesh_conj(T a)
template class LIBMESH_EXPORT DenseVector< Real >
Definition: dense_vector.C:29
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
std::vector< std::unique_ptr< NumericVector< Number > > > basis_functions
The libMesh vectors storing the finite element coefficients of the RB basis functions.
const Parallel::Communicator & comm() const
Real POD_tol
If positive, this tolerance determines the number of POD modes we add to the space on a call to enric...
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
dof_id_type n_local_dofs() const
Definition: system.C:150
virtual void init(const numeric_index_type n, const numeric_index_type n_local, const bool fast=false, const ParallelType ptype=AUTOMATIC)=0
Change the dimension of the vector to n.
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
ADRealEigenVector< T, D, asd > abs(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:57
unsigned int get_Nmax() const
Get/set Nmax, the maximum number of RB functions we are willing to compute.
NumericVector< Number > & get_basis_function(unsigned int i)
Get a reference to the i^th basis function.
unsigned int get_delta_N() const
Get delta_N, the number of basis functions we add to the RB space per iteration of the greedy algorit...
static std::unique_ptr< NumericVector< Number > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
virtual Real rb_solve(unsigned int N)
Perform online solve with the N RB basis functions, for the set of parameters in current_params, where 0 <= N <= RB_size.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::vector< std::unique_ptr< NumericVector< Number > > > temporal_data
Dense matrix to store the data that we use for the temporal POD.
OStreamProxy out
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
unsigned int get_n_time_steps() const
Get/set the total number of time-steps.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
void set_delta_N(const unsigned int new_delta_N)
Set delta_N, the number of basis functions we add to the RB space from each POD.
template class LIBMESH_EXPORT NumericVector< Number >
virtual void update_system() override
Update the system after enriching the RB space.

◆ final_linear_residual()

Real libMesh::LinearImplicitSystem::final_linear_residual ( ) const
inlineinherited

◆ forward_qoi_parameter_sensitivity()

void libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData sensitivities 
)
overridevirtualinherited

Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j].

Uses the forward sensitivity method.

Currently uses finite differenced derivatives (partial q / partial p) and (partial R / partial p).

Reimplemented from libMesh::System.

Definition at line 600 of file implicit_system.C.

References std::abs(), libMesh::SensitivityData::allocate_data(), libMesh::ExplicitSystem::assemble_qoi(), libMesh::ExplicitSystem::assemble_qoi_derivative(), libMesh::ImplicitSystem::assembly(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::NumericVector< T >::dot(), libMesh::System::get_adjoint_rhs(), libMesh::System::get_qoi_values(), libMesh::System::get_sensitivity_solution(), libMesh::QoISet::has_index(), libMesh::make_range(), libMesh::ImplicitSystem::matrix, libMesh::System::n_qois(), libMesh::Real, libMesh::ExplicitSystem::rhs, libMesh::ImplicitSystem::sensitivity_solve(), libMesh::ParameterVector::size(), and libMesh::TOLERANCE.

Referenced by main().

603 {
604  ParameterVector & parameters =
605  const_cast<ParameterVector &>(parameters_in);
606 
607  const unsigned int Np = cast_int<unsigned int>
608  (parameters.size());
609  const unsigned int Nq = this->n_qois();
610 
611  // An introduction to the problem:
612  //
613  // Residual R(u(p),p) = 0
614  // partial R / partial u = J = system matrix
615  //
616  // This implies that:
617  // d/dp(R) = 0
618  // (partial R / partial p) +
619  // (partial R / partial u) * (partial u / partial p) = 0
620 
621  // We first solve for (partial u / partial p) for each parameter:
622  // J * (partial u / partial p) = - (partial R / partial p)
623 
624  this->sensitivity_solve(parameters);
625 
626  // Get ready to fill in sensitivities:
627  sensitivities.allocate_data(qoi_indices, *this, parameters);
628 
629  // We use the identity:
630  // dq/dp = (partial q / partial p) + (partial q / partial u) *
631  // (partial u / partial p)
632 
633  // We get (partial q / partial u) from the user
634  this->assemble_qoi_derivative(qoi_indices,
635  /* include_liftfunc = */ true,
636  /* apply_constraints = */ false);
637 
638  // We don't need these to be closed() in this function, but libMesh
639  // standard practice is to have them closed() by the time the
640  // function exits
641  for (auto i : make_range(this->n_qois()))
642  if (qoi_indices.has_index(i))
643  this->get_adjoint_rhs(i).close();
644 
645  for (unsigned int j=0; j != Np; ++j)
646  {
647  // We currently get partial derivatives via central differencing
648 
649  // (partial q / partial p) ~= (q(p+dp)-q(p-dp))/(2*dp)
650 
651  Number old_parameter = *parameters[j];
652 
653  const Real delta_p =
654  TOLERANCE * std::max(std::abs(old_parameter), 1e-3);
655 
656  *parameters[j] = old_parameter - delta_p;
657  this->assemble_qoi(qoi_indices);
658  const std::vector<Number> qoi_minus = this->get_qoi_values();
659 
660  *parameters[j] = old_parameter + delta_p;
661  this->assemble_qoi(qoi_indices);
662  const std::vector<Number> qoi_plus = this->get_qoi_values();
663 
664  std::vector<Number> partialq_partialp(Nq, 0);
665  for (unsigned int i=0; i != Nq; ++i)
666  if (qoi_indices.has_index(i))
667  partialq_partialp[i] = (qoi_plus[i] - qoi_minus[i]) / (2.*delta_p);
668 
669  // Don't leave the parameter changed
670  *parameters[j] = old_parameter;
671 
672  for (unsigned int i=0; i != Nq; ++i)
673  if (qoi_indices.has_index(i))
674  sensitivities[i][j] = partialq_partialp[i] +
675  this->get_adjoint_rhs(i).dot(this->get_sensitivity_solution(j));
676  }
677 
678  // All parameters have been reset.
679  // We didn't cache the original rhs or matrix for memory reasons,
680  // but we can restore them to a state consistent solution -
681  // principle of least surprise.
682  this->assembly(true, true);
683  this->rhs->close();
684  this->matrix->close();
685  this->assemble_qoi(qoi_indices);
686 }
static constexpr Real TOLERANCE
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
NumericVector< Number > & get_sensitivity_solution(unsigned int i=0)
Definition: system.C:1140
NumericVector< Number > * rhs
The system matrix.
virtual std::pair< unsigned int, Real > sensitivity_solve(const ParameterVector &parameters) override
Assembles & solves the linear system(s) (dR/du)*u_p = -dR/dp, for those parameters contained within p...
virtual T dot(const NumericVector< T > &v) const =0
ADRealEigenVector< T, D, asd > abs(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:57
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
The system matrix.
virtual void assemble_qoi(const QoISet &qoi_indices=QoISet()) override
Prepares qoi for quantity of interest assembly, then calls user qoi function.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
virtual void assemble_qoi_derivative(const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true) override
Prepares adjoint_rhs for quantity of interest derivative assembly, then calls user qoi derivative fun...
std::vector< Number > get_qoi_values() const
Returns a copy of qoi, not a reference.
Definition: system.C:2341
NumericVector< Number > & get_adjoint_rhs(unsigned int i=0)
Definition: system.C:1255

◆ generate_training_parameters_deterministic()

std::pair< std::size_t, std::size_t > libMesh::RBConstructionBase< LinearImplicitSystem >::generate_training_parameters_deterministic ( const Parallel::Communicator communicator,
const std::map< std::string, bool > &  log_param_scale,
std::map< std::string, std::vector< RBParameter >> &  local_training_parameters_in,
const unsigned int  n_global_training_samples_in,
const RBParameters min_parameters,
const RBParameters max_parameters,
const bool  serial_training_set = false 
)
staticinherited

Static helper function for generating a deterministic set of parameters.

Only works with 1 or 2 parameters (as defined by the lengths of min/max parameters vectors), otherwise throws an error. The parameter n_global_training_samples_in is the total number of parameters to generate, and they will be split across all the processors (unless serial_training_set=true) in the local_training_parameters_in map.

Returns
a pair of {first_local_index,last_local_index}

Definition at line 564 of file rb_construction_base.C.

571 {
572  libmesh_assert_equal_to ( min_parameters.n_parameters(), max_parameters.n_parameters() );
573  const unsigned int num_params = min_parameters.n_parameters();
574 
575  if (num_params == 0)
576  return {0,0};
577 
578  if (num_params > 3)
579  libmesh_not_implemented_msg("ERROR: Deterministic training sample generation "
580  "not implemented for more than three parameters.");
581 
582  // TODO - we don't support vector-data here yet. This would only apply in the case where
583  // min or max are vector-valued, and all the generated points need to stay within those ranges.
584  // But typically we expect that if we're calling this function, we only have 1 min and 1 max,
585  // so the generated values are single-valued as well. The .get_value() calls will throw an error
586  // if this is not the case.
587 
588  // Reinitialize training_parameters_in (but don't remove existing keys!)
589  const auto &[n_local_training_samples, first_local_index] =
590  calculate_n_local_samples_and_index(communicator, n_global_training_samples_in,
592  const auto last_local_index = first_local_index + n_local_training_samples;
593  for (const auto & pr : min_parameters)
594  local_training_parameters_in[pr.first] = std::vector<RBParameter>(n_local_training_samples);
595 
596  // n_training_samples_per_param has 3 entries, but entries after "num_params"
597  // are unused so we just set their value to 1. We need to set it to 1 (rather
598  // than 0) so that we don't skip the inner part of the triply-nested loop over
599  // n_training_samples_per_param below.
600  std::vector<unsigned int> n_training_samples_per_param(3);
601  for (unsigned int param=0; param<3; param++)
602  {
603  if (param < num_params)
604  {
605  n_training_samples_per_param[param] =
606  static_cast<unsigned int>( std::round(std::pow(static_cast<Real>(n_global_training_samples_in), 1./num_params)) );
607  }
608  else
609  {
610  n_training_samples_per_param[param] = 1;
611  }
612  }
613 
614  {
615  // The current implementation assumes that we have the same number of
616  // samples in each parameter, so we check that n_training_samples_in
617  // is consistent with this assumption.
618  unsigned int total_samples_check = 1;
619  for (unsigned int n_samples : n_training_samples_per_param)
620  {
621  total_samples_check *= n_samples;
622  }
623 
624  libmesh_error_msg_if(total_samples_check != n_global_training_samples_in,
625  "Error: Number of training samples = "
626  << n_global_training_samples_in
627  << " does not enable a uniform grid of samples with "
628  << num_params << " parameters. Try "
629  << total_samples_check << " samples instead?");
630  }
631 
632  // First we make a list of training samples associated with each parameter,
633  // then we take a tensor product to obtain the final set of training samples.
634  std::vector<std::vector<Real>> training_samples_per_param(num_params);
635  {
636  unsigned int i = 0;
637  for (const auto & pr : min_parameters)
638  {
639  const std::string & param_name = pr.first;
640  const bool use_log_scaling = libmesh_map_find(log_param_scale, param_name);
641  Real min_param = min_parameters.get_value(param_name);
642  Real max_param = max_parameters.get_value(param_name);
643 
644  training_samples_per_param[i].resize(n_training_samples_per_param[i]);
645 
646  for (unsigned int j=0; j<n_training_samples_per_param[i]; j++)
647  {
648  // Generate log10 scaled training parameters
649  if (use_log_scaling)
650  {
651  Real epsilon = 1.e-6; // Prevent rounding errors triggering asserts
652  Real log_min = std::log10(min_param + epsilon);
653  Real log_range = std::log10( (max_param-epsilon) / (min_param+epsilon) );
654  Real step_size = log_range /
655  std::max((unsigned int)1,(n_training_samples_per_param[i]-1));
656 
657  if (j<(n_training_samples_per_param[i]-1))
658  {
659  training_samples_per_param[i][j] = std::pow(10., log_min + j*step_size );
660  }
661  else
662  {
663  // due to rounding error, the last parameter can be slightly
664  // bigger than max_parameters, hence snap back to the max
665  training_samples_per_param[i][j] = max_param;
666  }
667  }
668  else
669  {
670  // Generate linearly scaled training parameters
671  Real step_size = (max_param - min_param) /
672  std::max((unsigned int)1,(n_training_samples_per_param[i]-1));
673  training_samples_per_param[i][j] = j*step_size + min_param;
674  }
675 
676  }
677  i++;
678  }
679  }
680 
681  // Now load into training_samples_in
682  {
683  std::vector<unsigned int> indices(3);
684  unsigned int index_count = 0;
685  for (indices[0]=0; indices[0]<n_training_samples_per_param[0]; indices[0]++)
686  {
687  for (indices[1]=0; indices[1]<n_training_samples_per_param[1]; indices[1]++)
688  {
689  for (indices[2]=0; indices[2]<n_training_samples_per_param[2]; indices[2]++)
690  {
691  unsigned int param_count = 0;
692  for (const auto & pr : min_parameters)
693  {
694  std::vector<RBParameter> & training_vector =
695  libmesh_map_find(local_training_parameters_in, pr.first);
696  if (first_local_index <= index_count && index_count < last_local_index)
697  training_vector[index_count - first_local_index] =
698  {training_samples_per_param[param_count][indices[param_count]]};
699 
700  param_count++;
701  }
702  index_count++;
703  }
704  }
705  }
706  }
707  return {first_local_index, first_local_index+n_local_training_samples};
708 }
T pow(const T &x)
Definition: utility.h:328
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...

◆ generate_training_parameters_random()

std::pair< std::size_t, std::size_t > libMesh::RBConstructionBase< LinearImplicitSystem >::generate_training_parameters_random ( const Parallel::Communicator communicator,
const std::map< std::string, bool > &  log_param_scale,
std::map< std::string, std::vector< RBParameter >> &  local_training_parameters_in,
const unsigned int  n_global_training_samples_in,
const RBParameters min_parameters,
const RBParameters max_parameters,
const int  training_parameters_random_seed = -1,
const bool  serial_training_set = false 
)
staticinherited

Static helper function for generating a randomized set of parameters.

The parameter n_global_training_samples_in is the total number of parameters to generate, and they will be split across all the processors (unless serial_training_set=true) in the local_training_parameters_in map.

Returns
a pair of {first_local_index,last_local_index}

Definition at line 464 of file rb_construction_base.C.

472 {
473  const unsigned int num_params = min_parameters.n_parameters();
474  libmesh_error_msg_if(num_params!=max_parameters.n_parameters(),
475  "Number of parameters must be identical for min/max.");
476 
477  // Clear training_parameters_in
478  local_training_parameters_in.clear();
479 
480  if (num_params == 0)
481  return {0,0};
482 
483  if (training_parameters_random_seed < 0)
484  {
485  if (!serial_training_set)
486  {
487  // seed the random number generator with the system time
488  // and the processor ID so that the seed is different
489  // on different processors
490  std::srand( static_cast<unsigned>( std::time(0)*(1+communicator.rank()) ));
491  }
492  else
493  {
494  // seed the random number generator with the system time
495  // only so that the seed is the same on all processors
496  //
497  // Note that we broadcast the time on processor 0 to make
498  // sure all processors agree.
499  unsigned int current_time = static_cast<unsigned>( std::time(0) );
500  communicator.broadcast(current_time, 0);
501  std::srand(current_time);
502  }
503  }
504  else
505  {
506  if (!serial_training_set)
507  {
508  // seed the random number generator with the provided value
509  // and the processor ID so that the seed is different
510  // on different processors
511  std::srand( static_cast<unsigned>( training_parameters_random_seed*(1+communicator.rank()) ));
512  }
513  else
514  {
515  // seed the random number generator with the provided value
516  // so that the seed is the same on all processors
517  std::srand( static_cast<unsigned>( training_parameters_random_seed ));
518  }
519  }
520 
521  // TODO - we don't support vector-data here yet. This would only apply in the case where
522  // min or max are vector-valued, and all the generated points need to stay within those ranges.
523  // But typically we expect that if we're calling this function, we only have 1 min and 1 max,
524  // so the generated values are single-valued as well. The .get_value() calls will throw an error
525  // if this is not the case.
526 
527  // initialize training_parameters_in
528  const auto & [n_local_training_samples, first_local_index] =
529  calculate_n_local_samples_and_index(communicator, n_global_training_samples_in,
531  for (const auto & pr : min_parameters)
532  local_training_parameters_in[pr.first] = std::vector<RBParameter>(n_local_training_samples);
533 
534  // finally, set the values
535  for (auto & [param_name, sample_vector] : local_training_parameters_in)
536  {
537  for (auto i : make_range(n_local_training_samples))
538  {
539  Real random_number = static_cast<Real>(std::rand()) / RAND_MAX; // in range [0,1]
540 
541  // Generate log10 scaled training parameters
542  if (libmesh_map_find(log_param_scale, param_name))
543  {
544  Real log_min = std::log10(min_parameters.get_value(param_name));
545  Real log_range = std::log10(max_parameters.get_value(param_name) / min_parameters.get_value(param_name));
546 
547  sample_vector[i] = {std::pow(10., log_min + random_number*log_range )};
548  }
549  // Generate linearly scaled training parameters
550  else
551  {
552  sample_vector[i] = {
553  random_number * (max_parameters.get_value(param_name) -
554  min_parameters.get_value(param_name)) +
555  min_parameters.get_value(param_name)};
556  }
557  }
558  }
559  return {first_local_index, first_local_index+n_local_training_samples};
560 }
T pow(const T &x)
Definition: utility.h:328
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
DIE A HORRIBLE DEATH HERE typedef MPI_Comm communicator
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...

◆ get_abs_training_tolerance()

Real libMesh::RBConstruction::get_abs_training_tolerance ( ) const
inlineinherited

◆ get_adjoint_rhs() [1/2]

NumericVector< Number > & libMesh::System::get_adjoint_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's adjoint rhs vectors, by default the one corresponding to the first qoi. This what the user's QoI derivative code should assemble when setting up an adjoint problem

Definition at line 1255 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::adjoint_solve(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), and libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

1256 {
1257  std::ostringstream adjoint_rhs_name;
1258  adjoint_rhs_name << "adjoint_rhs" << i;
1259 
1260  return this->get_vector(adjoint_rhs_name.str());
1261 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_adjoint_rhs() [2/2]

const NumericVector< Number > & libMesh::System::get_adjoint_rhs ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's adjoint rhs vectors, by default the one corresponding to the first qoi.

Definition at line 1265 of file system.C.

References libMesh::System::get_vector().

1266 {
1267  std::ostringstream adjoint_rhs_name;
1268  adjoint_rhs_name << "adjoint_rhs" << i;
1269 
1270  return this->get_vector(adjoint_rhs_name.str());
1271 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_adjoint_solution() [1/2]

NumericVector< Number > & libMesh::System::get_adjoint_solution ( unsigned int  i = 0)
inherited

◆ get_adjoint_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_adjoint_solution ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's adjoint solution vectors, by default the one corresponding to the first qoi.

Definition at line 1203 of file system.C.

References libMesh::System::get_vector().

1204 {
1205  std::ostringstream adjoint_name;
1206  adjoint_name << "adjoint_solution" << i;
1207 
1208  return this->get_vector(adjoint_name.str());
1209 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_all_matrices()

void TransientRBConstruction::get_all_matrices ( std::map< std::string, SparseMatrix< Number > *> &  all_matrices)
overridevirtual

Get a map that stores pointers to all of the matrices.

Reimplemented from libMesh::RBConstruction.

Definition at line 318 of file transient_rb_construction.C.

References libMesh::RBConstruction::get_all_matrices(), get_M_q(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), get_non_dirichlet_M_q(), libMesh::RBConstruction::get_rb_theta_expansion(), L2_matrix, non_dirichlet_L2_matrix, and libMesh::RBConstruction::store_non_dirichlet_operators.

319 {
320  Parent::get_all_matrices(all_matrices);
321 
322  all_matrices["L2_matrix"] = L2_matrix.get();
323 
325  all_matrices["L2_matrix_non_dirichlet"] = non_dirichlet_L2_matrix.get();
326 
327  TransientRBThetaExpansion & trans_theta_expansion =
328  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
329  const unsigned int Q_m = trans_theta_expansion.get_n_M_terms();
330 
331  for (unsigned int q_m=0; q_m<Q_m; q_m++)
332  {
333  std::stringstream matrix_name;
334  matrix_name << "M" << q_m;
335  all_matrices[matrix_name.str()] = get_M_q(q_m);
336 
338  {
339  matrix_name << "_non_dirichlet";
340  all_matrices[matrix_name.str()] = get_non_dirichlet_M_q(q_m);
341  }
342  }
343 }
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
virtual void get_all_matrices(std::map< std::string, SparseMatrix< Number > *> &all_matrices)
Get a map that stores pointers to all of the matrices.
SparseMatrix< Number > * get_M_q(unsigned int q)
Get a pointer to M_q.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
std::unique_ptr< SparseMatrix< Number > > non_dirichlet_L2_matrix
The L2 matrix without Dirichlet conditions enforced.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
SparseMatrix< Number > * get_non_dirichlet_M_q(unsigned int q)
Get a pointer to non_dirichlet_M_q.

◆ get_all_variable_numbers()

void libMesh::System::get_all_variable_numbers ( std::vector< unsigned int > &  all_variable_numbers) const
inherited

Fills all_variable_numbers with all the variable numbers for the variables that have been added to this system.

Definition at line 1565 of file system.C.

References libMesh::System::_variable_numbers, and libMesh::System::n_vars().

Referenced by MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), and SystemsTest::testProjectCubeWithMeshFunction().

1566 {
1567  all_variable_numbers.resize(n_vars());
1568 
1569  unsigned int count = 0;
1570  for (auto vn : _variable_numbers)
1571  all_variable_numbers[count++] = vn.second;
1572 }
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
unsigned int n_vars() const
Definition: system.h:2349

◆ get_all_vectors()

void libMesh::RBConstruction::get_all_vectors ( std::map< std::string, NumericVector< Number > *> &  all_vectors)
virtualinherited

Get a map that stores pointers to all of the vectors.

Definition at line 2413 of file rb_construction.C.

References libMesh::RBConstruction::get_Fq(), libMesh::RBThetaExpansion::get_n_F_terms(), libMesh::RBConstruction::get_non_dirichlet_Fq(), libMesh::RBConstruction::get_output_vectors(), libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::RBConstruction::store_non_dirichlet_operators.

2414 {
2415  all_vectors.clear();
2416 
2417  get_output_vectors(all_vectors);
2418 
2419  for (unsigned int q_f=0; q_f<get_rb_theta_expansion().get_n_F_terms(); q_f++)
2420  {
2421  std::stringstream F_vector_name;
2422  F_vector_name << "F" << q_f;
2423  all_vectors[F_vector_name.str()] = get_Fq(q_f);
2424 
2426  {
2427  F_vector_name << "_non_dirichlet";
2428  all_vectors[F_vector_name.str()] = get_non_dirichlet_Fq(q_f);
2429  }
2430  }
2431 }
unsigned int get_n_F_terms() const
Get Q_f, the number of terms in the affine expansion for the right-hand side.
NumericVector< Number > * get_Fq(unsigned int q)
Get a pointer to Fq.
virtual void get_output_vectors(std::map< std::string, NumericVector< Number > *> &all_vectors)
Get a map that stores pointers to all of the vectors.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
NumericVector< Number > * get_non_dirichlet_Fq(unsigned int q)
Get a pointer to non-Dirichlet Fq.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_Aq()

SparseMatrix< Number > * libMesh::RBConstruction::get_Aq ( unsigned int  q)
inherited

Get a pointer to Aq.

Definition at line 2310 of file rb_construction.C.

References libMesh::RBConstruction::Aq_vector, and libMesh::RBConstruction::get_rb_theta_expansion().

Referenced by libMesh::RBConstruction::add_scaled_Aq(), libMesh::RBConstruction::assemble_all_affine_operators(), libMesh::RBConstruction::get_all_matrices(), libMesh::RBConstruction::get_non_dirichlet_Aq_if_avail(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), and libMesh::RBConstruction::update_residual_terms().

2311 {
2312  libmesh_error_msg_if(q >= get_rb_theta_expansion().get_n_A_terms(),
2313  "Error: We must have q < Q_a in get_Aq.");
2314 
2315  return Aq_vector[q].get();
2316 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
std::vector< std::unique_ptr< SparseMatrix< Number > > > Aq_vector
Vector storing the Q_a matrices from the affine expansion.

◆ get_closest_value()

Real libMesh::RBParametrized::get_closest_value ( Real  value,
const std::vector< Real > &  list_of_values 
)
staticinherited
Returns
The closest entry to value from list_of_values.

Definition at line 443 of file rb_parametrized.C.

References std::abs(), distance(), libMesh::Real, and value.

Referenced by libMesh::RBParametrized::is_value_in_list().

444 {
445  libmesh_error_msg_if(list_of_values.empty(), "Error: list_of_values is empty.");
446 
447  Real min_distance = std::numeric_limits<Real>::max();
448  Real closest_val = 0.;
449  for (const auto & current_value : list_of_values)
450  {
451  Real distance = std::abs(value - current_value);
452  if (distance < min_distance)
453  {
454  min_distance = distance;
455  closest_val = current_value;
456  }
457  }
458 
459  return closest_val;
460 }
Real distance(const Point &p)
ADRealEigenVector< T, D, asd > abs(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:57
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const bool value
Definition: xdr_io.C:54

◆ get_constraint_object()

System::Constraint & libMesh::System::get_constraint_object ( )
inherited

Return the user object for imposing constraints.

Definition at line 2174 of file system.C.

References libMesh::System::_constrain_system_object.

2175 {
2176  libmesh_assert_msg(_constrain_system_object,"No constraint object available.");
2177  return *_constrain_system_object;
2178 }
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081

◆ get_control()

Real libMesh::RBTemporalDiscretization::get_control ( const unsigned int  k) const
inherited

Get/set the RHS control.

Definition at line 79 of file rb_temporal_discretization.C.

References libMesh::RBTemporalDiscretization::_control, and libMesh::RBTemporalDiscretization::get_n_time_steps().

Referenced by libMesh::TransientRBEvaluation::compute_residual_dual_norm(), libMesh::TransientRBEvaluation::rb_solve(), libMesh::TransientRBEvaluation::rb_solve_again(), and truth_assembly().

80 {
81  libmesh_assert_less_equal (k, get_n_time_steps());
82  return _control[k];
83 }
std::vector< Real > _control
The RHS control (scalar function of time).
unsigned int get_n_time_steps() const
Get/set the total number of time-steps.

◆ get_convergence_assertion_flag()

bool libMesh::RBConstruction::get_convergence_assertion_flag ( ) const
protectedinherited

Getter for the flag determining if convergence should be checked after each solve.

Definition at line 2672 of file rb_construction.C.

References libMesh::RBConstruction::assert_convergence.

2673 {
2674  return assert_convergence;
2675 }
bool assert_convergence
A boolean flag to indicate whether to check for proper convergence after each solve.

◆ get_current_training_parameter_index()

unsigned int libMesh::RBConstruction::get_current_training_parameter_index ( ) const
protectedinherited

Get/set the current training parameter index.

Definition at line 2692 of file rb_construction.C.

References libMesh::RBConstruction::_current_training_parameter_index.

Referenced by libMesh::RBConstruction::get_RB_error_bound().

2693 {
2695 }
unsigned int _current_training_parameter_index
The current training parameter index during reduced basis training.

◆ get_delta_N()

unsigned int libMesh::RBConstruction::get_delta_N ( ) const
inlineinherited

Get delta_N, the number of basis functions we add to the RB space per iteration of the greedy algorithm.

For steady-state systems, this should be 1, but can be more than 1 for time-dependent systems.

Definition at line 462 of file rb_construction.h.

References libMesh::RBConstruction::delta_N.

Referenced by add_IC_to_RB_space(), enrich_RB_space(), print_info(), update_system(), write_riesz_representors_to_files(), and libMesh::RBConstruction::write_riesz_representors_to_files().

462 { return delta_N; }
unsigned int delta_N
The number of basis functions that we add at each greedy step.

◆ get_delta_t()

Real libMesh::RBTemporalDiscretization::get_delta_t ( ) const
inherited

◆ get_deterministic_training_parameter_name()

const std::string& libMesh::RBConstructionBase< LinearImplicitSystem >::get_deterministic_training_parameter_name ( ) const
inherited

Get the name of the parameter that we will generate deterministic training parameters for.

◆ get_discrete_parameter_values()

const std::map< std::string, std::vector< Real > > & libMesh::RBParametrized::get_discrete_parameter_values ( ) const
inherited

Get a const reference to the discrete parameter values.

Definition at line 370 of file rb_parametrized.C.

References libMesh::RBParametrized::_discrete_parameter_values, and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::check_if_valid_params(), libMesh::RBParametrized::get_n_discrete_params(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBParametrized::print_discrete_parameter_values(), and libMesh::RBParametrized::write_discrete_parameter_values_to_file().

371 {
372  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_discrete_parameter_values");
373 
375 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
std::map< std::string, std::vector< Real > > _discrete_parameter_values
Map that defines the allowable values of any discrete parameters.

◆ get_dof_map() [1/2]

const DofMap & libMesh::System::get_dof_map ( ) const
inlineinherited
Returns
A constant reference to this system's _dof_map.

Definition at line 2293 of file system.h.

References libMesh::System::_dof_map.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::DifferentiableSystem::add_dot_var_dirichlet_bcs(), libMesh::HPCoarsenTest::add_projection(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::ImplicitSystem::adjoint_solve(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::EquationSystems::allgather(), allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), alternative_fe_assembly(), assemble(), LinearElasticity::assemble(), assemble_1D(), AssembleOptimization::assemble_A_and_F(), assemble_and_solve(), assemble_biharmonic(), assemble_divgrad(), assemble_elasticity(), assemble_ellipticdg(), assemble_func(), assemble_helmholtz(), assemble_laplace(), assemble_mass(), assemble_matrices(), assemble_matrix_and_rhs(), assemble_poisson(), assemble_SchroedingerEquation(), assemble_shell(), assemble_stokes(), assemble_wave(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::PetscDMWrapper::build_sf(), libMesh::System::calculate_norm(), compute_jacobian(), compute_residual(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), MyConstraint::constrain(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), DMCreateDomainDecomposition_libMesh(), DMCreateFieldDecomposition_libMesh(), DMlibMeshFunction(), DMlibMeshJacobian(), DMlibMeshSetSystem_libMesh(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), fe_assembly(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::System::get_info(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), HeatSystem::init_data(), SimpleRBConstruction::init_data(), LaplaceSystem::init_dirichlet_bcs(), libMesh::FEMContext::init_internal_data(), libMesh::EigenSystem::init_matrices(), libMesh::System::init_matrices(), libMesh::CondensedEigenSystem::initialize_condensed_dofs(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), LaplaceYoung::jacobian(), LargeDeformationElasticity::jacobian(), libMesh::System::late_matrix_init(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::System::local_dof_indices(), AssembleOptimization::lower_and_upper_bounds(), main(), libMesh::DofMap::max_constraint_error(), LinearElasticityWithContact::move_mesh(), libMesh::DGFEMContext::neighbor_side_fe_reinit(), libMesh::UnsteadySolver::old_nonlinear_solution(), libMesh::SecondOrderUnsteadySolver::old_solution_accel(), libMesh::SecondOrderUnsteadySolver::old_solution_rate(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), libMesh::RBSCMConstruction::perform_SCM_greedy(), periodic_bc_test_poisson(), libMesh::petsc_auto_fieldsplit(), libMesh::ErrorVector::plot_error(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::FEMContext::pre_fe_reinit(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::System::re_update(), libMesh::System::read_parallel_data(), libMesh::System::read_SCALAR_dofs(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::System::reinit(), libMesh::System::reinit_constraints(), libMesh::EquationSystems::reinit_solutions(), LaplaceYoung::residual(), LargeDeformationElasticity::residual(), LinearElasticityWithContact::residual_and_jacobian(), libMesh::UnsteadySolver::retrieve_timestep(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), libMesh::HPCoarsenTest::select_refinement(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::RBConstruction::set_context_solution_vec(), libMesh::PetscDMWrapper::set_point_range_in_section(), set_system_parameters(), FETestBase< order, family, elem_type, 1 >::setUp(), SolidSystem::side_time_derivative(), libMesh::NewtonSolver::solve(), libMesh::PetscDiffSolver::solve(), libMesh::EigenSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), SystemsTest::testBlockRestrictedVarNDofs(), DofMapTest::testConstraintLoopDetection(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), EquationSystemsTest::testDisableDefaultGhosting(), SystemsTest::testDofCouplingWithVarGroups(), DofMapTest::testDofOwner(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), MeshAssignTest::testMeshMoveAssign(), PeriodicBCTest::testPeriodicBC(), SystemsTest::testPostInitAddVectorTypeChange(), SystemsTest::testProjectCubeWithMeshFunction(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), InfFERadialTest::testRefinement(), EquationSystemsTest::testSelectivePRefine(), BoundaryInfoTest::testShellFaceConstraints(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::UnsteadySolver::update(), libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve(), libMesh::ImplicitSystem::weighted_sensitivity_solve(), libMesh::Nemesis_IO_Helper::write_nodal_solution(), libMesh::System::write_parallel_data(), libMesh::EnsightIO::write_scalar_ascii(), libMesh::System::write_SCALAR_dofs(), libMesh::EnsightIO::write_vector_ascii(), and libMesh::RBConstruction::zero_constrained_dofs_on_vector().

2294 {
2295  return *_dof_map;
2296 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ get_dof_map() [2/2]

DofMap & libMesh::System::get_dof_map ( )
inlineinherited
Returns
A writable reference to this system's _dof_map.

Definition at line 2301 of file system.h.

References libMesh::System::_dof_map.

2302 {
2303  return *_dof_map;
2304 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ get_equation_systems() [1/2]

const EquationSystems& libMesh::System::get_equation_systems ( ) const
inlineinherited
Returns
A constant reference to this system's parent EquationSystems object.

Definition at line 730 of file system.h.

References libMesh::System::_equation_systems.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::RBSCMConstruction::add_scaled_symm_Aq(), libMesh::NewmarkSystem::clear(), libMesh::FrequencySystem::clear_all(), compute_jacobian(), compute_residual(), LinearElasticityWithContact::compute_stresses(), SolidSystem::element_time_derivative(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::find_squared_element_error(), libMesh::ImplicitSystem::get_linear_solve_parameters(), SolidSystem::init_data(), HeatSystem::init_data(), libMesh::FrequencySystem::init_data(), LaplaceYoung::jacobian(), libMesh::RBSCMConstruction::load_matrix_B(), LinearElasticityWithContact::move_mesh(), libMesh::FrequencySystem::n_frequencies(), libMesh::RBSCMConstruction::perform_SCM_greedy(), libMesh::System::point_gradient(), libMesh::System::point_value(), libMesh::InterMeshProjection::project_system_vectors(), LaplaceYoung::residual(), LinearElasticityWithContact::residual_and_jacobian(), libMesh::FileHistoryData::retrieve_adjoint_solution(), libMesh::FileHistoryData::retrieve_primal_solution(), libMesh::FileHistoryData::rewrite_stored_solution(), SolidSystem::save_initial_mesh(), libMesh::FrequencySystem::set_current_frequency(), libMesh::FrequencySystem::set_frequencies(), libMesh::FrequencySystem::set_frequencies_by_range(), libMesh::FrequencySystem::set_frequencies_by_steps(), libMesh::NewmarkSystem::set_newmark_parameters(), libMesh::NonlinearImplicitSystem::set_solver_parameters(), SolidSystem::side_time_derivative(), libMesh::EigenSystem::solve(), libMesh::CondensedEigenSystem::solve(), libMesh::FrequencySystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::FileHistoryData::store_adjoint_solution(), libMesh::FileHistoryData::store_initial_solution(), libMesh::FileHistoryData::store_primal_solution(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), MeshAssignTest::testMeshMoveAssign(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::DirectSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::DTKSolutionTransfer::transfer(), truth_solve(), libMesh::RBConstruction::truth_solve(), and libMesh::WrappedFunction< Output >::WrappedFunction().

730 { return _equation_systems; }
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119

◆ get_equation_systems() [2/2]

EquationSystems& libMesh::System::get_equation_systems ( )
inlineinherited
Returns
A reference to this system's parent EquationSystems object.

Definition at line 735 of file system.h.

References libMesh::System::_equation_systems.

735 { return _equation_systems; }
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119

◆ get_error_temporal_data()

const NumericVector< Number > & TransientRBConstruction::get_error_temporal_data ( )

Get the column of temporal_data corresponding to the current time level.

This gives access to the truth projection error data. If the RB basis is empty, then this corresponds to the truth solution data itself.

Definition at line 698 of file transient_rb_construction.C.

References libMesh::RBTemporalDiscretization::get_time_step(), and temporal_data.

699 {
700  LOG_SCOPE("get_error_temporal_data()", "TransientRBConstruction");
701 
702  const unsigned int time_step = get_time_step();
703 
704  return *temporal_data[time_step];
705 }
unsigned int get_time_step() const
Get/set the current time-step.
std::vector< std::unique_ptr< NumericVector< Number > > > temporal_data
Dense matrix to store the data that we use for the temporal POD.

◆ get_euler_theta()

Real libMesh::RBTemporalDiscretization::get_euler_theta ( ) const
inherited

◆ get_evaluated_thetas()

const std::vector< Number > & libMesh::RBConstruction::get_evaluated_thetas ( unsigned int  training_parameter_index) const
protectedinherited

Return the evaluated theta functions at the given training parameter index.

Definition at line 2703 of file rb_construction.C.

References libMesh::RBConstruction::_evaluated_thetas, libMesh::RBConstructionBase< LinearImplicitSystem >::get_first_local_training_index(), and libMesh::libmesh_assert().

Referenced by libMesh::RBConstruction::get_RB_error_bound().

2704 {
2705  const numeric_index_type first_index = get_first_local_training_index();
2706  libmesh_assert(training_parameter_index >= first_index);
2707 
2708  const numeric_index_type local_index = training_parameter_index - first_index;
2709  libmesh_assert(local_index < _evaluated_thetas.size());
2710 
2711  return _evaluated_thetas[local_index];
2712 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
std::vector< std::vector< Number > > _evaluated_thetas
Storage of evaluated theta functions at a set of parameters.
dof_id_type numeric_index_type
Definition: id_types.h:99
libmesh_assert(ctx)

◆ get_first_local_training_index()

numeric_index_type libMesh::RBConstructionBase< LinearImplicitSystem >::get_first_local_training_index ( ) const
inherited

Get the first local index of the training parameters.

Definition at line 184 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBConstruction::get_evaluated_thetas(), and libMesh::RBConstruction::preevaluate_thetas().

185 {
186  libmesh_error_msg_if(!_training_parameters_initialized,
187  "Error: training parameters must first be initialized.");
188 
189  // First we check if there are no parameters here, and in that case we
190  // return 0 for a serial training set and comm().rank() for a parallel
191  // training set. This is consistent with get_n_training_samples(), and
192  // avoids accessing training_parameters.begin() when training_parameters
193  // is empty.
194  if (_training_parameters.empty())
195  {
197  return 0;
198  else
199  return this->comm().rank();
200  }
201 
202  return _first_local_index;
203 }
processor_id_type rank() const
const Parallel::Communicator & comm() const
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_Fq()

NumericVector< Number > * libMesh::RBConstruction::get_Fq ( unsigned int  q)
inherited

Get a pointer to Fq.

Definition at line 2339 of file rb_construction.C.

References libMesh::RBConstruction::Fq_vector, and libMesh::RBConstruction::get_rb_theta_expansion().

Referenced by libMesh::RBConstruction::assemble_all_affine_vectors(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::RBConstruction::get_all_vectors(), libMesh::RBConstruction::get_non_dirichlet_Fq_if_avail(), truth_assembly(), and libMesh::RBConstruction::truth_assembly().

2340 {
2341  libmesh_error_msg_if(q >= get_rb_theta_expansion().get_n_F_terms(),
2342  "Error: We must have q < Q_f in get_Fq.");
2343 
2344  return Fq_vector[q].get();
2345 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
std::vector< std::unique_ptr< NumericVector< Number > > > Fq_vector
Vector storing the Q_f vectors in the affine decomposition of the right-hand side.

◆ get_global_max_error_pair()

void libMesh::RBConstructionBase< LinearImplicitSystem >::get_global_max_error_pair ( const Parallel::Communicator communicator,
std::pair< numeric_index_type, Real > &  error_pair 
)
staticprotectedinherited

Static function to return the error pair (index,error) that is corresponds to the largest error on all processors.

Definition at line 133 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::compute_max_error_bound().

135 {
136  // Set error_pair.second to the maximum global value and also
137  // find which processor contains the maximum value
138  unsigned int proc_ID_index;
139  communicator.maxloc(error_pair.second, proc_ID_index);
140 
141  // Then broadcast error_pair.first from proc_ID_index
142  communicator.broadcast(error_pair.first, proc_ID_index);
143 }
DIE A HORRIBLE DEATH HERE typedef MPI_Comm communicator

◆ get_greedy_parameter()

const RBParameters & libMesh::RBConstruction::get_greedy_parameter ( unsigned int  i)
inherited

Return the parameters chosen during the i^th step of the Greedy algorithm.

Definition at line 1555 of file rb_construction.C.

References libMesh::RBConstruction::get_rb_evaluation(), and libMesh::RBEvaluation::greedy_param_list.

1556 {
1557  libmesh_error_msg_if(i >= get_rb_evaluation().greedy_param_list.size(),
1558  "Error: Argument in RBConstruction::get_greedy_parameter is too large.");
1559 
1561 }
std::vector< RBParameters > greedy_param_list
The list of parameters selected by the Greedy algorithm in generating the Reduced Basis associated wi...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ get_info() [1/3]

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & [name, cd] : _counts)
59  oss << "| " << name << " reference count information:\n"
60  << "| Creations: " << cd.first << '\n'
61  << "| Destructions: " << cd.second << '\n';
62 
63  oss << " ---------------------------------------------------------------------------- \n";
64 
65  return oss.str();
66 
67 #else
68 
69  return "";
70 
71 #endif
72 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
static Counts _counts
Actually holds the data.

◆ get_info() [2/3]

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & [name, cd] : _counts)
59  oss << "| " << name << " reference count information:\n"
60  << "| Creations: " << cd.first << '\n'
61  << "| Destructions: " << cd.second << '\n';
62 
63  oss << " ---------------------------------------------------------------------------- \n";
64 
65  return oss.str();
66 
67 #else
68 
69  return "";
70 
71 #endif
72 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
static Counts _counts
Actually holds the data.

◆ get_info() [3/3]

std::string libMesh::System::get_info ( ) const
inherited
Returns
A string containing information about the system.

Definition at line 1988 of file system.C.

References libMesh::ParallelObject::comm(), libMesh::FEType::family, libMesh::System::get_dof_map(), libMesh::DofMap::get_info(), libMesh::FEType::inf_map, libMesh::make_range(), TIMPI::Communicator::max(), libMesh::System::n_constrained_dofs(), libMesh::System::n_dofs(), libMesh::System::n_local_constrained_dofs(), libMesh::System::n_local_dofs(), libMesh::System::n_matrices(), libMesh::System::n_variable_groups(), libMesh::VariableGroup::n_variables(), libMesh::System::n_vectors(), libMesh::VariableGroup::name(), libMesh::System::name(), libMesh::System::number(), libMesh::FEType::order, libMesh::FEType::radial_family, libMesh::FEType::radial_order, libMesh::System::system_type(), libMesh::Variable::type(), libMesh::DofMap::variable_group(), and libMesh::System::variable_group().

1989 {
1990  std::ostringstream oss;
1991 
1992 
1993  const std::string & sys_name = this->name();
1994 
1995  oss << " System #" << this->number() << ", \"" << sys_name << "\"\n"
1996  << " Type \"" << this->system_type() << "\"\n"
1997  << " Variables=";
1998 
1999  for (auto vg : make_range(this->n_variable_groups()))
2000  {
2001  const VariableGroup & vg_description (this->variable_group(vg));
2002 
2003  if (vg_description.n_variables() > 1) oss << "{ ";
2004  for (auto vn : make_range(vg_description.n_variables()))
2005  oss << "\"" << vg_description.name(vn) << "\" ";
2006  if (vg_description.n_variables() > 1) oss << "} ";
2007  }
2008 
2009  oss << '\n';
2010 
2011  oss << " Finite Element Types=";
2012 #ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
2013  for (auto vg : make_range(this->n_variable_groups()))
2014  oss << "\""
2015  << Utility::enum_to_string<FEFamily>(this->get_dof_map().variable_group(vg).type().family)
2016  << "\" ";
2017 #else
2018  for (auto vg : make_range(this->n_variable_groups()))
2019  {
2020  oss << "\""
2021  << Utility::enum_to_string<FEFamily>(this->get_dof_map().variable_group(vg).type().family)
2022  << "\", \""
2023  << Utility::enum_to_string<FEFamily>(this->get_dof_map().variable_group(vg).type().radial_family)
2024  << "\" ";
2025  }
2026 
2027  oss << '\n' << " Infinite Element Mapping=";
2028  for (auto vg : make_range(this->n_variable_groups()))
2029  oss << "\""
2030  << Utility::enum_to_string<InfMapType>(this->get_dof_map().variable_group(vg).type().inf_map)
2031  << "\" ";
2032 #endif
2033 
2034  oss << '\n';
2035 
2036  oss << " Approximation Orders=";
2037  for (auto vg : make_range(this->n_variable_groups()))
2038  {
2039 #ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
2040  oss << "\""
2041  << Utility::enum_to_string<Order>(this->get_dof_map().variable_group(vg).type().order)
2042  << "\" ";
2043 #else
2044  oss << "\""
2045  << Utility::enum_to_string<Order>(this->get_dof_map().variable_group(vg).type().order)
2046  << "\", \""
2047  << Utility::enum_to_string<Order>(this->get_dof_map().variable_group(vg).type().radial_order)
2048  << "\" ";
2049 #endif
2050  }
2051 
2052  oss << '\n';
2053 
2054  oss << " n_dofs()=" << this->n_dofs() << '\n';
2055  dof_id_type local_dofs = this->n_local_dofs();
2056  oss << " n_local_dofs()=" << local_dofs << '\n';
2057  this->comm().max(local_dofs);
2058  oss << " max(n_local_dofs())=" << local_dofs << '\n';
2059 #ifdef LIBMESH_ENABLE_CONSTRAINTS
2060  oss << " n_constrained_dofs()=" << this->n_constrained_dofs() << '\n';
2061  oss << " n_local_constrained_dofs()=" << this->n_local_constrained_dofs() << '\n';
2062  dof_id_type local_unconstrained_dofs = this->n_local_dofs() - this->n_local_constrained_dofs();
2063  this->comm().max(local_unconstrained_dofs);
2064  oss << " max(local unconstrained dofs)=" << local_unconstrained_dofs << '\n';
2065 #endif
2066 
2067  oss << " " << "n_vectors()=" << this->n_vectors() << '\n';
2068  oss << " " << "n_matrices()=" << this->n_matrices() << '\n';
2069  // oss << " " << "n_additional_matrices()=" << this->n_additional_matrices() << '\n';
2070 
2071  oss << this->get_dof_map().get_info();
2072 
2073  return oss.str();
2074 }
FEFamily family
The type of finite element.
Definition: fe_type.h:207
OrderWrapper radial_order
The approximation order in radial direction of the infinite element.
Definition: fe_type.h:240
unsigned int n_variable_groups() const
Definition: system.h:2357
const Parallel::Communicator & comm() const
OrderWrapper order
The approximation order of the element.
Definition: fe_type.h:201
dof_id_type n_local_dofs() const
Definition: system.C:150
std::string get_info() const
Gets summary info about the sparsity bandwidth and constraints.
Definition: dof_map.C:2922
dof_id_type n_dofs() const
Definition: system.C:113
unsigned int number() const
Definition: system.h:2269
unsigned int n_vectors() const
Definition: system.h:2477
const VariableGroup & variable_group(const unsigned int c) const
Definition: dof_map.h:2104
InfMapType inf_map
The coordinate mapping type of the infinite element.
Definition: fe_type.h:261
unsigned int n_matrices() const
Definition: system.h:2594
FEFamily radial_family
The type of approximation in radial direction.
Definition: fe_type.h:253
virtual std::string system_type() const
Definition: system.h:505
void max(const T &r, T &o, Request &req) const
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
dof_id_type n_local_constrained_dofs() const
Definition: system.C:135
const std::string & name() const
Definition: system.h:2261
const DofMap & get_dof_map() const
Definition: system.h:2293
const VariableGroup & variable_group(unsigned int vg) const
Return a constant reference to VariableGroup vg.
Definition: system.h:2387
dof_id_type n_constrained_dofs() const
Definition: system.C:120
uint8_t dof_id_type
Definition: id_types.h:67
const FEType & type() const
Definition: variable.h:140

◆ get_inner_product_assembly()

ElemAssembly & libMesh::RBConstruction::get_inner_product_assembly ( )
inherited
Returns
A reference to the inner product assembly object

Definition at line 410 of file rb_construction.C.

References libMesh::RBConstruction::inner_product_assembly, and libMesh::RBConstruction::use_energy_inner_product.

411 {
412  libmesh_error_msg_if(use_energy_inner_product,
413  "Error: inner_product_assembly not available since we're using energy inner-product");
414 
415  libmesh_error_msg_if(!inner_product_assembly,
416  "Error: inner_product_assembly hasn't been initialized yet");
417 
418  return *inner_product_assembly;
419 }
bool use_energy_inner_product
Boolean to indicate whether we&#39;re using the energy inner-product.
ElemAssembly * inner_product_assembly
Pointer to inner product assembly.

◆ get_inner_product_matrix() [1/2]

SparseMatrix< Number > * libMesh::RBConstruction::get_inner_product_matrix ( )
inherited

Get a pointer to inner_product_matrix.

Accessing via this function, rather than directly through the class member allows us to do error checking (e.g. inner_product_matrix is not defined in low-memory mode).

Definition at line 2264 of file rb_construction.C.

References libMesh::RBConstruction::inner_product_matrix.

Referenced by libMesh::RBConstruction::get_all_matrices(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), and libMesh::RBSCMConstruction::load_matrix_B().

2265 {
2266  return inner_product_matrix.get();
2267 }
std::unique_ptr< SparseMatrix< Number > > inner_product_matrix
The inner product matrix.

◆ get_inner_product_matrix() [2/2]

const SparseMatrix< Number > * libMesh::RBConstruction::get_inner_product_matrix ( ) const
inherited

Definition at line 2269 of file rb_construction.C.

References libMesh::RBConstruction::inner_product_matrix.

2270 {
2271  return inner_product_matrix.get();
2272 }
std::unique_ptr< SparseMatrix< Number > > inner_product_matrix
The inner product matrix.

◆ get_L2_assembly()

ElemAssembly & TransientRBConstruction::get_L2_assembly ( )
Returns
A reference to the L2 assembly object

Definition at line 458 of file transient_rb_construction.C.

References L2_assembly.

459 {
460  libmesh_error_msg_if(!L2_assembly, "Error: L2_assembly hasn't been initialized yet");
461 
462  return *L2_assembly;
463 }
ElemAssembly * L2_assembly
Function pointer for assembling the L2 matrix.

◆ get_last_local_training_index()

numeric_index_type libMesh::RBConstructionBase< LinearImplicitSystem >::get_last_local_training_index ( ) const
inherited

Get the last local index of the training parameters.

Definition at line 206 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::compute_max_error_bound().

207 {
208  libmesh_error_msg_if(!_training_parameters_initialized,
209  "Error: training parameters must first be initialized.");
210 
211  if (_training_parameters.empty())
212  return 0;
213 
215 }
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_linear_solve_parameters()

std::pair< unsigned int, Real > libMesh::ImplicitSystem::get_linear_solve_parameters ( ) const
virtualinherited
Returns
An integer corresponding to the upper iteration count limit and a Real corresponding to the convergence tolerance to be used in linear adjoint and/or sensitivity solves

Reimplemented in libMesh::NonlinearImplicitSystem, and libMesh::DifferentiableSystem.

Definition at line 1210 of file implicit_system.C.

References libMesh::Parameters::get(), libMesh::System::get_equation_systems(), libMesh::EquationSystems::parameters, and libMesh::Real.

Referenced by libMesh::ImplicitSystem::adjoint_solve(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve(), and libMesh::ImplicitSystem::weighted_sensitivity_solve().

1211 {
1212  return std::make_pair(this->get_equation_systems().parameters.get<unsigned int>("linear solver maximum iterations"),
1213  this->get_equation_systems().parameters.get<Real>("linear solver tolerance"));
1214 }
const EquationSystems & get_equation_systems() const
Definition: system.h:730
const T & get(std::string_view) const
Definition: parameters.h:426
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Parameters parameters
Data structure holding arbitrary parameters.

◆ get_linear_solver()

LinearSolver< Number > * libMesh::LinearImplicitSystem::get_linear_solver ( ) const
overridevirtualinherited
Returns
A pointer to a linear solver appropriate for use in adjoint and/or sensitivity solves

Reimplemented from libMesh::ImplicitSystem.

Definition at line 352 of file linear_implicit_system.C.

References libMesh::ImplicitSystem::linear_solver.

Referenced by libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::RBConstruction::initialize_rb_construction(), main(), SystemsTest::testDofCouplingWithVarGroups(), truth_solve(), and libMesh::RBConstruction::truth_solve().

353 {
354  return linear_solver.get();
355 }
std::unique_ptr< LinearSolver< Number > > linear_solver
This class handles all the details of interfacing with various linear algebra packages like PETSc or ...

◆ get_local_n_training_samples()

numeric_index_type libMesh::RBConstructionBase< LinearImplicitSystem >::get_local_n_training_samples ( ) const
inherited

Get the total number of training samples local to this processor.

Definition at line 168 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::compute_max_error_bound(), and libMesh::RBConstruction::preevaluate_thetas().

169 {
170  libmesh_error_msg_if(!_training_parameters_initialized,
171  "Error: training parameters must first be initialized.");
172 
173  // First we check if there are no parameters here, and in that case we
174  // return 1 for both serial and parallel training sets. This is consistent
175  // with get_n_training_samples(), and avoids accessing
176  // training_parameters.begin() when training_parameters is empty.
177  if (_training_parameters.empty())
178  return 1;
179 
181 }
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_M_q()

SparseMatrix< Number > * TransientRBConstruction::get_M_q ( unsigned int  q)

Get a pointer to M_q.

Definition at line 293 of file transient_rb_construction.C.

References libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBConstruction::get_rb_theta_expansion(), and M_q_vector.

Referenced by add_scaled_mass_matrix(), assemble_all_affine_operators(), get_all_matrices(), mass_matrix_scaled_matvec(), and update_RB_system_matrices().

294 {
295  TransientRBThetaExpansion & trans_theta_expansion =
296  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
297 
298  libmesh_error_msg_if(q >= trans_theta_expansion.get_n_M_terms(),
299  "Error: We must have q < Q_m in get_M_q.");
300 
301  return M_q_vector[q].get();
302 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
std::vector< std::unique_ptr< SparseMatrix< Number > > > M_q_vector
Vector storing the Q_m matrices from the mass operator.

◆ get_matrix() [1/2]

const SparseMatrix< Number > & libMesh::System::get_matrix ( std::string_view  mat_name) const
inherited
Returns
A const reference to this system's matrix named mat_name.

Definition at line 1073 of file system.C.

References libMesh::System::_matrices.

Referenced by add_M_C_K_helmholtz(), assemble(), assemble_helmholtz(), libMesh::NewmarkSystem::compute_matrix(), libMesh::CondensedEigenSystem::get_condensed_matrix_A(), libMesh::CondensedEigenSystem::get_condensed_matrix_B(), libMesh::ImplicitSystem::get_system_matrix(), main(), libMesh::EigenTimeSolver::solve(), and libMesh::NewmarkSystem::update_rhs().

1074 {
1075  return *libmesh_map_find(_matrices, mat_name);
1076 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ get_matrix() [2/2]

SparseMatrix< Number > & libMesh::System::get_matrix ( std::string_view  mat_name)
inherited
Returns
A writable reference to this system's matrix named mat_name.

Definition at line 1080 of file system.C.

References libMesh::System::_matrices.

1081 {
1082  return *libmesh_map_find(_matrices, mat_name);
1083 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ get_matrix_for_output_dual_solves()

SparseMatrix< Number > & TransientRBConstruction::get_matrix_for_output_dual_solves ( )
overrideprotectedvirtual

Override to return the L2 product matrix for output dual norm solves for transient state problems.

Reimplemented from libMesh::RBConstruction.

Definition at line 879 of file transient_rb_construction.C.

References L2_matrix.

880 {
881  return *L2_matrix;
882 }
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.

◆ get_max_truth_solves()

int libMesh::TransientRBConstruction::get_max_truth_solves ( ) const
inline

Get/set max_truth_solves, the maximum number of RB truth solves we are willing to compute in the transient case.

Note
In the steady state case, max_truth_solves is not needed since it is equivalent to Nmax.

Definition at line 214 of file transient_rb_construction.h.

References max_truth_solves.

Referenced by greedy_termination_test().

214 { return max_truth_solves; }
int max_truth_solves
Maximum number of truth solves in the POD-Greedy.

◆ get_mesh() [1/2]

const MeshBase & libMesh::System::get_mesh ( ) const
inlineinherited
Returns
A constant reference to this systems's _mesh.

Definition at line 2277 of file system.h.

References libMesh::System::_mesh.

Referenced by libMesh::ExactSolution::_compute_error(), LinearElasticityWithContact::add_contact_edge_elements(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::HPCoarsenTest::add_projection(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), AssembleOptimization::assemble_A_and_F(), libMesh::FEMSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::FEMSystem::assembly(), AssemblyA0::boundary_assembly(), AssemblyA1::boundary_assembly(), AssemblyF0::boundary_assembly(), AssemblyF1::boundary_assembly(), AssemblyA2::boundary_assembly(), AssemblyF2::boundary_assembly(), libMesh::System::calculate_norm(), compute_jacobian(), compute_residual(), LinearElasticityWithContact::compute_stresses(), libMesh::RBEIMEvaluation::distribute_bfs(), DMCreateDomainDecomposition_libMesh(), DMCreateFieldDecomposition_libMesh(), DMlibMeshSetSystem_libMesh(), SolidSystem::element_time_derivative(), HeatSystem::element_time_derivative(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::GenericProjector(), LinearElasticityWithContact::get_least_and_max_gap_function(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::RBEIMConstruction::init_context(), SolidSystem::init_data(), libMesh::System::init_data(), libMesh::System::init_matrices(), LinearElasticityWithContact::initialize_contact_load_paths(), libMesh::RBEIMConstruction::initialize_qp_data(), libMesh::System::local_dof_indices(), libMesh::DofMap::max_constraint_error(), libMesh::FEMSystem::mesh_position_get(), libMesh::FEMSystem::mesh_position_set(), LinearElasticityWithContact::move_mesh(), libMesh::RBEIMEvaluation::node_distribute_bfs(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::petsc_auto_fieldsplit(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::FEMSystem::postprocess(), libMesh::RBParametrizedFunction::preevaluate_parametrized_function_on_mesh(), libMesh::RBParametrizedFunction::preevaluate_parametrized_function_on_mesh_sides(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::System::read_header(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::System::reinit(), LinearElasticityWithContact::residual_and_jacobian(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), SolidSystem::save_initial_mesh(), libMesh::HPSingularity::select_refinement(), libMesh::HPCoarsenTest::select_refinement(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::RBEIMEvaluation::side_distribute_bfs(), SolidSystem::side_time_derivative(), libMesh::PetscDiffSolver::solve(), MeshAssignTest::testMeshMoveAssign(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::BoundaryVolumeSolutionTransfer::transfer_volume_boundary(), truth_solve(), libMesh::RBConstruction::truth_solve(), libMesh::System::write_header(), libMesh::RBEvaluation::write_out_vectors(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_vector(), libMesh::System::write_serialized_vectors(), and libMesh::System::zero_variable().

2278 {
2279  return _mesh;
2280 }
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125

◆ get_mesh() [2/2]

MeshBase & libMesh::System::get_mesh ( )
inlineinherited
Returns
A reference to this systems's _mesh.

Definition at line 2285 of file system.h.

References libMesh::System::_mesh.

2286 {
2287  return _mesh;
2288 }
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125

◆ get_n_continuous_params()

unsigned int libMesh::RBParametrized::get_n_continuous_params ( ) const
inherited

Get the number of continuous parameters.

Definition at line 112 of file rb_parametrized.C.

References libMesh::RBParametrized::get_n_discrete_params(), libMesh::RBParametrized::get_n_params(), libMesh::libmesh_assert(), and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

113 {
114  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_n_continuous_params");
115 
117 
118  return static_cast<unsigned int>(get_n_params() - get_n_discrete_params());
119 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
unsigned int get_n_discrete_params() const
Get the number of discrete parameters.
libmesh_assert(ctx)
unsigned int get_n_params() const
Get the number of parameters.

◆ get_n_discrete_params()

unsigned int libMesh::RBParametrized::get_n_discrete_params ( ) const
inherited

Get the number of discrete parameters.

Definition at line 121 of file rb_parametrized.C.

References libMesh::RBParametrized::get_discrete_parameter_values(), and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::get_n_continuous_params(), and libMesh::RBParametrized::write_discrete_parameter_values_to_file().

122 {
123  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_n_discrete_params");
124 
125  return cast_int<unsigned int>
127 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values() const
Get a const reference to the discrete parameter values.

◆ get_n_params()

unsigned int libMesh::RBParametrized::get_n_params ( ) const
inherited

Get the number of parameters.

Definition at line 103 of file rb_parametrized.C.

References libMesh::RBParameters::n_parameters(), libMesh::RBParametrized::parameters_initialized, libMesh::RBParametrized::parameters_max, and libMesh::RBParametrized::parameters_min.

Referenced by libMesh::RBParametrized::check_if_valid_params(), libMesh::RBEIMConstruction::compute_max_eim_error(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBParametrized::get_n_continuous_params(), libMesh::RBSCMConstruction::print_info(), libMesh::RBEIMConstruction::print_info(), libMesh::RBConstruction::print_info(), libMesh::RBEIMEvaluation::set_eim_error_indicator_active(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

104 {
105  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_n_params");
106 
107  libmesh_assert_equal_to ( parameters_min.n_parameters(), parameters_max.n_parameters() );
108 
109  return parameters_min.n_parameters();
110 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.
unsigned int n_parameters() const
Get the number of parameters that have been added.

◆ get_n_time_steps()

unsigned int libMesh::RBTemporalDiscretization::get_n_time_steps ( ) const
inherited

◆ get_n_training_samples()

numeric_index_type libMesh::RBConstructionBase< LinearImplicitSystem >::get_n_training_samples ( ) const
inherited

Get the number of global training samples.

Definition at line 146 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::print_info(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

147 {
148  libmesh_error_msg_if(!_training_parameters_initialized,
149  "Error: training parameters must first be initialized.");
150 
151  // First we check if there are no parameters here, and in that case we
152  // return 1 since a single training sample is sufficient to generate an
153  // RB approximation if there are no parameters. Note that in parallel,
154  // and when we don't have a serial training set, set return comm().size()
155  // so that each processor is assigned a single (empty) training sample.
156  if (_training_parameters.empty())
157  {
159  return 1;
160  else
161  return this->comm().size();
162  }
163 
165 }
const Parallel::Communicator & comm() const
processor_id_type size() const
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_Nmax()

unsigned int libMesh::RBConstruction::get_Nmax ( ) const
inlineinherited

Get/set Nmax, the maximum number of RB functions we are willing to compute.

Definition at line 246 of file rb_construction.h.

References libMesh::RBConstruction::Nmax.

Referenced by libMesh::RBConstruction::enrich_basis_from_rhs_terms(), enrich_RB_space(), libMesh::RBConstruction::greedy_termination_test(), libMesh::RBConstruction::train_reduced_basis_with_greedy(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

246 { return Nmax; }
unsigned int Nmax
Maximum number of reduced basis functions we are willing to use.

◆ get_non_dirichlet_Aq()

SparseMatrix< Number > * libMesh::RBConstruction::get_non_dirichlet_Aq ( unsigned int  q)
inherited

Get a pointer to non_dirichlet_Aq.

Definition at line 2318 of file rb_construction.C.

References libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBConstruction::non_dirichlet_Aq_vector, and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by libMesh::RBConstruction::assemble_all_affine_operators(), libMesh::RBConstruction::get_all_matrices(), and libMesh::RBConstruction::get_non_dirichlet_Aq_if_avail().

2319 {
2320  libmesh_error_msg_if(!store_non_dirichlet_operators,
2321  "Error: Must have store_non_dirichlet_operators==true to access non_dirichlet_Aq.");
2322 
2323  libmesh_error_msg_if(q >= get_rb_theta_expansion().get_n_A_terms(),
2324  "Error: We must have q < Q_a in get_Aq.");
2325 
2326  return non_dirichlet_Aq_vector[q].get();
2327 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
std::vector< std::unique_ptr< SparseMatrix< Number > > > non_dirichlet_Aq_vector
We may also need a second set of matrices/vectors that do not have the Dirichlet boundary conditions ...

◆ get_non_dirichlet_Aq_if_avail()

SparseMatrix< Number > * libMesh::RBConstruction::get_non_dirichlet_Aq_if_avail ( unsigned int  q)
inherited

Get a pointer to non_dirichlet_Aq if it's available, otherwise get Aq.

Definition at line 2329 of file rb_construction.C.

References libMesh::RBConstruction::get_Aq(), libMesh::RBConstruction::get_non_dirichlet_Aq(), and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by libMesh::RBConstruction::update_RB_system_matrices().

2330 {
2332  {
2333  return get_non_dirichlet_Aq(q);
2334  }
2335 
2336  return get_Aq(q);
2337 }
SparseMatrix< Number > * get_Aq(unsigned int q)
Get a pointer to Aq.
SparseMatrix< Number > * get_non_dirichlet_Aq(unsigned int q)
Get a pointer to non_dirichlet_Aq.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_Fq()

NumericVector< Number > * libMesh::RBConstruction::get_non_dirichlet_Fq ( unsigned int  q)
inherited

Get a pointer to non-Dirichlet Fq.

Definition at line 2347 of file rb_construction.C.

References libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBConstruction::non_dirichlet_Fq_vector, and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by libMesh::RBConstruction::assemble_all_affine_vectors(), libMesh::RBConstruction::get_all_vectors(), and libMesh::RBConstruction::get_non_dirichlet_Fq_if_avail().

2348 {
2349  libmesh_error_msg_if(!store_non_dirichlet_operators,
2350  "Error: Must have store_non_dirichlet_operators==true to access non_dirichlet_Fq.");
2351 
2352  libmesh_error_msg_if(q >= get_rb_theta_expansion().get_n_F_terms(),
2353  "Error: We must have q < Q_f in get_Fq.");
2354 
2355  return non_dirichlet_Fq_vector[q].get();
2356 }
std::vector< std::unique_ptr< NumericVector< Number > > > non_dirichlet_Fq_vector
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_Fq_if_avail()

NumericVector< Number > * libMesh::RBConstruction::get_non_dirichlet_Fq_if_avail ( unsigned int  q)
inherited

Get a pointer to non_dirichlet_Fq if it's available, otherwise get Fq.

Definition at line 2358 of file rb_construction.C.

References libMesh::RBConstruction::get_Fq(), libMesh::RBConstruction::get_non_dirichlet_Fq(), and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by libMesh::RBConstruction::update_RB_system_matrices().

2359 {
2361  {
2362  return get_non_dirichlet_Fq(q);
2363  }
2364 
2365  return get_Fq(q);
2366 }
NumericVector< Number > * get_Fq(unsigned int q)
Get a pointer to Fq.
NumericVector< Number > * get_non_dirichlet_Fq(unsigned int q)
Get a pointer to non-Dirichlet Fq.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_inner_product_matrix() [1/2]

SparseMatrix< Number > * libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix ( )
inherited

Get the non-Dirichlet (or more generally no-constraints) version of the inner-product matrix.

This is useful for performing multiplications on vectors that already have constraints enforced.

Definition at line 2274 of file rb_construction.C.

References libMesh::RBConstruction::non_dirichlet_inner_product_matrix, and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by libMesh::RBConstruction::get_all_matrices(), and libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail().

2275 {
2276  libmesh_error_msg_if(!store_non_dirichlet_operators,
2277  "Error: Must have store_non_dirichlet_operators==true to access non_dirichlet_inner_product_matrix.");
2278 
2280 }
std::unique_ptr< SparseMatrix< Number > > non_dirichlet_inner_product_matrix
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_inner_product_matrix() [2/2]

const SparseMatrix< Number > * libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix ( ) const
inherited

Definition at line 2282 of file rb_construction.C.

References libMesh::RBConstruction::non_dirichlet_inner_product_matrix, and libMesh::RBConstruction::store_non_dirichlet_operators.

2283 {
2284  libmesh_error_msg_if(!store_non_dirichlet_operators,
2285  "Error: Must have store_non_dirichlet_operators==true to access non_dirichlet_inner_product_matrix.");
2286 
2288 }
std::unique_ptr< SparseMatrix< Number > > non_dirichlet_inner_product_matrix
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_inner_product_matrix_if_avail() [1/2]

SparseMatrix< Number > * libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail ( )
inherited

Get the non-Dirichlet inner-product matrix if it's available, otherwise get the inner-product matrix with constraints.

Definition at line 2290 of file rb_construction.C.

References libMesh::RBConstruction::get_inner_product_matrix(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix(), and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by add_IC_to_RB_space(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), enrich_RB_space(), libMesh::RBConstruction::enrich_RB_space(), libMesh::RBConstruction::print_basis_function_orthogonality(), set_error_temporal_data(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::RBConstruction::truth_solve(), libMesh::RBConstruction::update_RB_system_matrices(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

2291 {
2293  {
2295  }
2296 
2297  return get_inner_product_matrix();
2298 }
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix()
Get the non-Dirichlet (or more generally no-constraints) version of the inner-product matrix...
SparseMatrix< Number > * get_inner_product_matrix()
Get a pointer to inner_product_matrix.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_inner_product_matrix_if_avail() [2/2]

const SparseMatrix< Number > * libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail ( ) const
inherited

Definition at line 2300 of file rb_construction.C.

References libMesh::RBConstruction::get_inner_product_matrix(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix(), and libMesh::RBConstruction::store_non_dirichlet_operators.

2301 {
2303  {
2305  }
2306 
2307  return get_inner_product_matrix();
2308 }
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix()
Get the non-Dirichlet (or more generally no-constraints) version of the inner-product matrix...
SparseMatrix< Number > * get_inner_product_matrix()
Get a pointer to inner_product_matrix.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_M_q()

SparseMatrix< Number > * TransientRBConstruction::get_non_dirichlet_M_q ( unsigned int  q)

Get a pointer to non_dirichlet_M_q.

Definition at line 304 of file transient_rb_construction.C.

References libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBConstruction::get_rb_theta_expansion(), non_dirichlet_M_q_vector, and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by assemble_all_affine_operators(), and get_all_matrices().

305 {
306  libmesh_error_msg_if(!store_non_dirichlet_operators,
307  "Error: Must have store_non_dirichlet_operators==true to access non_dirichlet_M_q.");
308 
309  TransientRBThetaExpansion & trans_theta_expansion =
310  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
311 
312  libmesh_error_msg_if(q >= trans_theta_expansion.get_n_M_terms(),
313  "Error: We must have q < Q_m in get_M_q.");
314 
315  return non_dirichlet_M_q_vector[q].get();
316 }
std::vector< std::unique_ptr< SparseMatrix< Number > > > non_dirichlet_M_q_vector
We sometimes also need a second set of M_q matrices that do not have the Dirichlet boundary condition...
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...

◆ get_non_dirichlet_output_vector()

NumericVector< Number > * libMesh::RBConstruction::get_non_dirichlet_output_vector ( unsigned int  n,
unsigned int  q_l 
)
inherited

Get a pointer to non-Dirichlet output vector.

Definition at line 2378 of file rb_construction.C.

References libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::RBConstruction::non_dirichlet_outputs_vector.

Referenced by libMesh::RBConstruction::assemble_all_output_vectors(), and libMesh::RBConstruction::get_output_vectors().

2379 {
2380  libmesh_error_msg_if((n >= get_rb_theta_expansion().get_n_outputs()) ||
2381  (q_l >= get_rb_theta_expansion().get_n_output_terms(n)),
2382  "Error: We must have n < n_outputs and "
2383  "q_l < get_rb_theta_expansion().get_n_output_terms(n) in get_non_dirichlet_output_vector.");
2384 
2385  return non_dirichlet_outputs_vector[n][q_l].get();
2386 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
std::vector< std::vector< std::unique_ptr< NumericVector< Number > > > > non_dirichlet_outputs_vector

◆ get_normalize_rb_bound_in_greedy()

bool libMesh::RBConstruction::get_normalize_rb_bound_in_greedy ( ) const
inlineinherited

Definition at line 234 of file rb_construction.h.

References libMesh::RBConstruction::normalize_rb_bound_in_greedy.

Referenced by libMesh::RBConstruction::print_info().

bool normalize_rb_bound_in_greedy
This boolean indicates if we normalize the RB error in the greedy using RBEvaluation::get_error_bound...

◆ get_output_vector()

NumericVector< Number > * libMesh::RBConstruction::get_output_vector ( unsigned int  n,
unsigned int  q_l 
)
inherited

Get a pointer to the n^th output.

Definition at line 2368 of file rb_construction.C.

References libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::RBConstruction::outputs_vector.

Referenced by libMesh::RBConstruction::assemble_all_output_vectors(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::get_output_vectors(), truth_solve(), libMesh::RBConstruction::truth_solve(), and libMesh::RBConstruction::update_RB_system_matrices().

2369 {
2370  libmesh_error_msg_if((n >= get_rb_theta_expansion().get_n_outputs()) ||
2371  (q_l >= get_rb_theta_expansion().get_n_output_terms(n)),
2372  "Error: We must have n < n_outputs and "
2373  "q_l < get_rb_theta_expansion().get_n_output_terms(n) in get_output_vector.");
2374 
2375  return outputs_vector[n][q_l].get();
2376 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
std::vector< std::vector< std::unique_ptr< NumericVector< Number > > > > outputs_vector
The libMesh vectors that define the output functionals.

◆ get_output_vectors()

void libMesh::RBConstruction::get_output_vectors ( std::map< std::string, NumericVector< Number > *> &  all_vectors)
virtualinherited

Get a map that stores pointers to all of the vectors.

Definition at line 2433 of file rb_construction.C.

References libMesh::RBThetaExpansion::get_n_output_terms(), libMesh::RBThetaExpansion::get_n_outputs(), libMesh::RBConstruction::get_non_dirichlet_output_vector(), libMesh::RBConstruction::get_output_vector(), libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::RBConstruction::store_non_dirichlet_operators.

Referenced by libMesh::RBConstruction::get_all_vectors().

2434 {
2435  output_vectors.clear();
2436 
2437  for (unsigned int n=0; n<get_rb_theta_expansion().get_n_outputs(); n++)
2438  for (unsigned int q_l=0; q_l<get_rb_theta_expansion().get_n_output_terms(n); q_l++)
2439  {
2440  std::stringstream output_name;
2441  output_name << "output_" << n << "_"<< q_l;
2442  output_vectors[output_name.str()] = get_output_vector(n,q_l);
2443 
2445  {
2446  output_name << "_non_dirichlet";
2447  output_vectors[output_name.str()] = get_non_dirichlet_output_vector(n,q_l);
2448  }
2449  }
2450 }
unsigned int get_n_outputs() const
Get n_outputs, the number output functionals.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
bool store_non_dirichlet_operators
Boolean flag to indicate whether we store a second copy of each affine operator and vector which does...
unsigned int get_n_output_terms(unsigned int output_index) const
Get the number of affine terms associated with the specified output.
NumericVector< Number > * get_output_vector(unsigned int n, unsigned int q_l)
Get a pointer to the n^th output.
NumericVector< Number > * get_non_dirichlet_output_vector(unsigned int n, unsigned int q_l)
Get a pointer to non-Dirichlet output vector.

◆ get_parameter_max()

Real libMesh::RBParametrized::get_parameter_max ( const std::string &  param_name) const
inherited

Get maximum allowable value of parameter param_name.

Definition at line 183 of file rb_parametrized.C.

References libMesh::RBParameters::get_value(), libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_max.

Referenced by libMesh::RBParametrized::check_if_valid_params(), libMesh::RBSCMConstruction::print_info(), libMesh::RBEIMConstruction::print_info(), and libMesh::RBConstruction::print_info().

184 {
185  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameter_max");
186 
187  return parameters_max.get_value(param_name);
188 }
Real get_value(const std::string &param_name) const
Get the value of the specified parameter, throw an error if it does not exist.
Definition: rb_parameters.C:64
bool parameters_initialized
Flag indicating whether the parameters have been initialized.

◆ get_parameter_min()

Real libMesh::RBParametrized::get_parameter_min ( const std::string &  param_name) const
inherited

Get minimum allowable value of parameter param_name.

Definition at line 176 of file rb_parametrized.C.

References libMesh::RBParameters::get_value(), libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_min.

Referenced by libMesh::RBParametrized::check_if_valid_params(), libMesh::RBSCMConstruction::print_info(), libMesh::RBEIMConstruction::print_info(), and libMesh::RBConstruction::print_info().

177 {
178  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameter_min");
179 
180  return parameters_min.get_value(param_name);
181 }
Real get_value(const std::string &param_name) const
Get the value of the specified parameter, throw an error if it does not exist.
Definition: rb_parameters.C:64
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.

◆ get_parameter_names()

std::set< std::string > libMesh::RBParametrized::get_parameter_names ( ) const
inherited

Get a set that stores the parameter names.

Definition at line 129 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_min.

130 {
131  libmesh_deprecated();
132  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameter_names");
133 
134  std::set<std::string> parameter_names;
135  for (const auto & pr : parameters_min)
136  parameter_names.insert(pr.first);
137 
138  return parameter_names;
139 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.

◆ get_parameters()

const RBParameters & libMesh::RBParametrized::get_parameters ( ) const
inherited

Get the current parameters.

Definition at line 155 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters, and libMesh::RBParametrized::parameters_initialized.

Referenced by add_scaled_mass_matrix(), libMesh::TransientRBEvaluation::cache_online_residual_terms(), libMesh::RBEvaluation::compute_residual_dual_norm(), libMesh::RBSCMConstruction::compute_SCM_bounds_on_training_set(), libMesh::RBSCMConstruction::enrich_C_J(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_nodes(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), libMesh::RBEvaluation::eval_output_dual_norm(), libMesh::RBSCMConstruction::evaluate_stability_constant(), libMesh::RBConstruction::get_RB_error_bound(), libMesh::RBSCMEvaluation::get_SCM_LB(), libMesh::RBSCMEvaluation::get_SCM_UB(), SimpleRBEvaluation::get_stability_lower_bound(), libMesh::RBConstruction::greedy_termination_test(), libMesh::RBEIMConstruction::initialize_parametrized_functions_in_training_set(), libMesh::RBSCMEvaluation::legacy_read_offline_data_from_files(), mass_matrix_scaled_matvec(), libMesh::RBConstruction::preevaluate_thetas(), libMesh::RBSCMConstruction::print_info(), libMesh::RBEIMConstruction::print_info(), libMesh::RBConstruction::print_info(), libMesh::RBParametrized::print_parameters(), libMesh::RBSCMConstruction::process_parameters_file(), libMesh::TransientRBEvaluation::rb_solve(), libMesh::RBEvaluation::rb_solve(), libMesh::RBSCMEvaluation::save_current_parameters(), libMesh::RBEIMConstruction::train_eim_approximation_with_greedy(), libMesh::RBEIMConstruction::train_eim_approximation_with_POD(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), truth_solve(), libMesh::RBConstruction::truth_solve(), libMesh::TransientRBEvaluation::uncached_compute_residual_dual_norm(), and libMesh::RBConstruction::update_greedy_param_list().

156 {
157  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameters");
158 
159  return parameters;
160 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters
Vector storing the current parameters.

◆ get_parameters_max()

const RBParameters & libMesh::RBParametrized::get_parameters_max ( ) const
inherited

Get an RBParameters object that specifies the maximum allowable value for each parameter.

Definition at line 169 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_max.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBSCMConstruction::process_parameters_file(), libMesh::RBEIMConstruction::set_rb_construction_parameters(), libMesh::RBConstruction::set_rb_construction_parameters(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

170 {
171  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameters_max");
172 
173  return parameters_max;
174 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.

◆ get_parameters_min()

const RBParameters & libMesh::RBParametrized::get_parameters_min ( ) const
inherited

Get an RBParameters object that specifies the minimum allowable value for each parameter.

Definition at line 162 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_min.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBSCMConstruction::process_parameters_file(), libMesh::RBEIMConstruction::set_rb_construction_parameters(), libMesh::RBConstruction::set_rb_construction_parameters(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

163 {
164  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameters_min");
165 
166  return parameters_min;
167 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.

◆ get_params_from_training_set()

RBParameters libMesh::RBConstructionBase< LinearImplicitSystem >::get_params_from_training_set ( unsigned int  global_index)
protectedinherited

Return the RBParameters in index global_index of the global training set.

Why do we use an index here? RBParameters supports loading the full sample set. This seems probably unnecessary now to load individually. Maybe it's a memory issue?

Definition at line 224 of file rb_construction_base.C.

225 {
226  libmesh_error_msg_if(!_training_parameters_initialized,
227  "Error: training parameters must first be initialized.");
228 
229  // If the _training_parameters are empty, return an empty RBParameters.
230  // Otherwise, create a new RBParameters object from the single sample requested.
231  RBParameters params;
232  if (!_training_parameters.empty())
233  {
234  libmesh_error_msg_if((global_index < this->get_first_local_training_index()) ||
235  (global_index >= this->get_last_local_training_index()),
236  "Error: index "
237  << global_index
238  << " must be within range: "
240  << " - "
241  << this->get_last_local_training_index());
242 
243  const numeric_index_type local_index = global_index - get_first_local_training_index();
244  for (const auto & [param_name, sample_vector] : _training_parameters)
245  params.set_value(param_name, sample_vector[local_index]);
246 
247  // Copy all extra values into the new RBParameters.
248  // We assume that the samples may be indexed differently for extra parameters,
249  // so we don't just copy the local_index value.
250  const auto & mine = get_parameters();
251  for (const auto & [key, extra_sample_vector] :
252  as_range(mine.extra_begin(), mine.extra_end()))
253  {
254  for (const auto idx : index_range(extra_sample_vector))
255  params.set_extra_value(key, idx, extra_sample_vector[idx]);
256  }
257  }
258 
259  return params;
260 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
dof_id_type numeric_index_type
Definition: id_types.h:99
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
Helper function that allows us to treat a homogenous pair as a range.
Definition: simple_range.h:57
numeric_index_type get_last_local_training_index() const
Get the last local index of the training parameters.
const RBParameters & get_parameters() const
Get the current parameters.
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:111
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.
unsigned int idx(const ElemType type, const unsigned int nx, const unsigned int i, const unsigned int j)
A useful inline function which replaces the macros used previously.

◆ get_POD_tol()

Real libMesh::TransientRBConstruction::get_POD_tol ( ) const
inline

Get/set POD_tol.

Definition at line 220 of file transient_rb_construction.h.

References POD_tol.

Referenced by print_info().

220 { return POD_tol; }
Real POD_tol
If positive, this tolerance determines the number of POD modes we add to the space on a call to enric...

◆ get_preevaluate_thetas_flag()

bool libMesh::RBConstruction::get_preevaluate_thetas_flag ( ) const
inherited

Get/set flag to pre-evaluate the theta functions.

Definition at line 2682 of file rb_construction.C.

References libMesh::RBConstruction::_preevaluate_thetas_flag.

Referenced by libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBConstruction::get_RB_error_bound(), and libMesh::RBConstruction::train_reduced_basis_with_greedy().

2683 {
2684  return _preevaluate_thetas_flag;
2685 }
bool _preevaluate_thetas_flag
Flag to indicate if we preevaluate the theta functions.

◆ get_project_with_constraints()

bool libMesh::System::get_project_with_constraints ( )
inlineinherited

Setter and getter functions for project_with_constraints boolean.

Definition at line 1775 of file system.h.

References libMesh::System::project_with_constraints.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error().

1776  {
1777  return project_with_constraints;
1778  }
bool project_with_constraints
Do we want to apply constraints while projecting vectors ?
Definition: system.h:2253

◆ get_qoi_error_estimate_value()

Number libMesh::System::get_qoi_error_estimate_value ( unsigned int  qoi_index) const
inherited

Definition at line 2361 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::qoi_error_estimates.

Referenced by libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), and main().

2362 {
2363  libmesh_assert(qoi_index < qoi_error_estimates.size());
2364  return qoi_error_estimates[qoi_index];
2365 }
libmesh_assert(ctx)
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ get_qoi_value()

Number libMesh::System::get_qoi_value ( unsigned int  qoi_index) const
inherited

◆ get_qoi_values()

std::vector< Number > libMesh::System::get_qoi_values ( ) const
inherited

Returns a copy of qoi, not a reference.

Definition at line 2341 of file system.C.

References libMesh::System::qoi.

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::FEMSystem::assemble_qoi(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

2342 {
2343  return this->qoi;
2344 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611

◆ get_rb_assembly_expansion()

RBAssemblyExpansion & libMesh::RBConstruction::get_rb_assembly_expansion ( )
inherited
Returns
A reference to the rb_assembly_expansion object

Definition at line 397 of file rb_construction.C.

References libMesh::RBConstruction::rb_assembly_expansion.

Referenced by assemble_Mq_matrix(), initialize_rb_construction(), and libMesh::RBConstruction::initialize_rb_construction().

398 {
399  libmesh_error_msg_if(!rb_assembly_expansion, "Error: RBAssemblyExpansion object hasn't been initialized yet");
400 
401  return *rb_assembly_expansion;
402 }
RBAssemblyExpansion * rb_assembly_expansion
This member holds the (parameter independent) assembly functors that define the "affine expansion" of...

◆ get_RB_error_bound()

Real libMesh::RBConstruction::get_RB_error_bound ( )
protectedvirtualinherited
Returns
The RB error bound for the current parameters.

Used in the Greedy algorithm to select the next parameter.

Definition at line 1727 of file rb_construction.C.

References libMesh::RBConstruction::abs_training_tolerance, libMesh::RBConstruction::get_current_training_parameter_index(), libMesh::RBEvaluation::get_error_bound_normalization(), libMesh::RBConstruction::get_evaluated_thetas(), libMesh::RBParametrized::get_parameters(), libMesh::RBConstruction::get_preevaluate_thetas_flag(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBConstruction::normalize_rb_bound_in_greedy, libMesh::RBEvaluation::rb_solve(), libMesh::Real, and libMesh::RBParametrized::set_parameters().

Referenced by libMesh::RBConstruction::compute_max_error_bound().

1728 {
1730 
1731  Real error_bound = 0.;
1733  {
1734  // Obtain the pre-evaluated theta functions from the current training parameter index
1735  const auto & evaluated_thetas = get_evaluated_thetas(get_current_training_parameter_index());
1736  error_bound = get_rb_evaluation().rb_solve(get_rb_evaluation().get_n_basis_functions(),
1737  &evaluated_thetas);
1738  }
1739  else
1740  error_bound = get_rb_evaluation().rb_solve(get_rb_evaluation().get_n_basis_functions());
1741 
1742 
1744  {
1745  Real error_bound_normalization = get_rb_evaluation().get_error_bound_normalization();
1746 
1747  if ((error_bound < abs_training_tolerance) ||
1748  (error_bound_normalization < abs_training_tolerance))
1749  {
1750  // We don't want to normalize this error bound if the bound or the
1751  // normalization value are below the absolute tolerance. Hence do nothing
1752  // in this case.
1753  }
1754  else
1755  error_bound /= error_bound_normalization;
1756  }
1757 
1758  return error_bound;
1759 }
bool normalize_rb_bound_in_greedy
This boolean indicates if we normalize the RB error in the greedy using RBEvaluation::get_error_bound...
virtual Real get_error_bound_normalization()
unsigned int get_current_training_parameter_index() const
Get/set the current training parameter index.
bool get_preevaluate_thetas_flag() const
Get/set flag to pre-evaluate the theta functions.
const std::vector< Number > & get_evaluated_thetas(unsigned int training_parameter_index) const
Return the evaluated theta functions at the given training parameter index.
const RBParameters & get_parameters() const
Get the current parameters.
virtual Real rb_solve(unsigned int N)
Perform online solve with the N RB basis functions, for the set of parameters in current_params, where 0 <= N <= RB_size.
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ get_rb_evaluation() [1/2]

RBEvaluation & libMesh::RBConstruction::get_rb_evaluation ( )
inherited

Get a reference to the RBEvaluation object.

Definition at line 175 of file rb_construction.C.

References libMesh::RBConstruction::rb_eval.

Referenced by add_IC_to_RB_space(), assemble_affine_expansion(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), enrich_RB_space(), libMesh::RBConstruction::enrich_RB_space(), libMesh::RBConstruction::get_greedy_parameter(), libMesh::RBConstruction::get_RB_error_bound(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBConstruction::greedy_termination_test(), libMesh::RBConstruction::load_basis_function(), load_rb_solution(), libMesh::RBConstruction::load_rb_solution(), main(), libMesh::RBConstruction::preevaluate_thetas(), libMesh::RBConstruction::print_basis_function_orthogonality(), process_parameters_file(), read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::recompute_all_residual_terms(), set_error_temporal_data(), libMesh::RBConstruction::train_reduced_basis_with_greedy(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::RBConstruction::update_greedy_param_list(), update_RB_initial_condition_all_N(), update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), update_residual_terms(), libMesh::RBConstruction::update_residual_terms(), write_riesz_representors_to_files(), and libMesh::RBConstruction::write_riesz_representors_to_files().

176 {
177  libmesh_error_msg_if(!rb_eval, "Error: RBEvaluation object hasn't been initialized yet");
178 
179  return *rb_eval;
180 }
RBEvaluation * rb_eval
The current RBEvaluation object we are using to perform the Evaluation stage of the reduced basis met...

◆ get_rb_evaluation() [2/2]

const RBEvaluation & libMesh::RBConstruction::get_rb_evaluation ( ) const
inherited

Definition at line 182 of file rb_construction.C.

References libMesh::RBConstruction::rb_eval.

183 {
184  libmesh_error_msg_if(!rb_eval, "Error: RBEvaluation object hasn't been initialized yet");
185 
186  return *rb_eval;
187 }
RBEvaluation * rb_eval
The current RBEvaluation object we are using to perform the Evaluation stage of the reduced basis met...

◆ get_rb_theta_expansion() [1/2]

RBThetaExpansion & libMesh::RBConstruction::get_rb_theta_expansion ( )
inherited

Get a reference to the RBThetaExpansion object that that belongs to rb_eval.

Definition at line 194 of file rb_construction.C.

References libMesh::RBConstruction::get_rb_evaluation(), and libMesh::RBEvaluation::get_rb_theta_expansion().

Referenced by libMesh::RBConstruction::add_scaled_Aq(), add_scaled_mass_matrix(), allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), assemble_all_affine_operators(), libMesh::RBConstruction::assemble_all_affine_operators(), libMesh::RBConstruction::assemble_all_affine_vectors(), libMesh::RBConstruction::assemble_all_output_vectors(), libMesh::RBConstruction::assemble_Aq_matrix(), libMesh::RBConstruction::assemble_Fq_vector(), libMesh::RBConstruction::assemble_inner_product_matrix(), assemble_Mq_matrix(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), get_all_matrices(), libMesh::RBConstruction::get_all_matrices(), libMesh::RBConstruction::get_all_vectors(), libMesh::RBConstruction::get_Aq(), libMesh::RBConstruction::get_Fq(), get_M_q(), libMesh::RBConstruction::get_non_dirichlet_Aq(), libMesh::RBConstruction::get_non_dirichlet_Fq(), get_non_dirichlet_M_q(), libMesh::RBConstruction::get_non_dirichlet_output_vector(), libMesh::RBConstruction::get_output_vector(), libMesh::RBConstruction::get_output_vectors(), initialize_rb_construction(), libMesh::RBConstruction::initialize_rb_construction(), mass_matrix_scaled_matvec(), print_info(), libMesh::RBConstruction::print_info(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), truth_solve(), libMesh::RBConstruction::truth_solve(), update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

195 {
197 }
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the rb_theta_expansion.
Definition: rb_evaluation.C:85

◆ get_rb_theta_expansion() [2/2]

const RBThetaExpansion & libMesh::RBConstruction::get_rb_theta_expansion ( ) const
inherited

Definition at line 199 of file rb_construction.C.

References libMesh::RBConstruction::get_rb_evaluation(), and libMesh::RBEvaluation::get_rb_theta_expansion().

200 {
202 }
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the rb_theta_expansion.
Definition: rb_evaluation.C:85

◆ get_RB_training_type()

const std::string & libMesh::RBConstruction::get_RB_training_type ( ) const
inherited

Definition at line 1641 of file rb_construction.C.

References libMesh::RBConstruction::RB_training_type.

Referenced by libMesh::RBConstruction::print_info(), train_reduced_basis(), and libMesh::RBConstruction::train_reduced_basis().

1642 {
1643  return RB_training_type;
1644 }
std::string RB_training_type
This string indicates the type of training that we will use.

◆ get_rel_training_tolerance()

Real libMesh::RBConstruction::get_rel_training_tolerance ( ) const
inlineinherited

Definition at line 220 of file rb_construction.h.

References libMesh::RBConstruction::rel_training_tolerance.

Referenced by libMesh::RBConstruction::print_info().

220 { return rel_training_tolerance; }
Real rel_training_tolerance
Relative and absolute tolerances for training reduced basis using the Greedy scheme.

◆ get_sensitivity_rhs() [1/2]

NumericVector< Number > & libMesh::System::get_sensitivity_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's sensitivity rhs vectors, by default the one corresponding to the first parameter. By default these vectors are built by the library, using finite differences, when assemble_residual_derivatives() is called.

When assembled, this vector should hold -(partial R / partial p_i)

Definition at line 1285 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), and libMesh::ImplicitSystem::sensitivity_solve().

1286 {
1287  std::ostringstream sensitivity_rhs_name;
1288  sensitivity_rhs_name << "sensitivity_rhs" << i;
1289 
1290  return this->get_vector(sensitivity_rhs_name.str());
1291 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_sensitivity_rhs() [2/2]

const NumericVector< Number > & libMesh::System::get_sensitivity_rhs ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's sensitivity rhs vectors, by default the one corresponding to the first parameter.

Definition at line 1295 of file system.C.

References libMesh::System::get_vector().

1296 {
1297  std::ostringstream sensitivity_rhs_name;
1298  sensitivity_rhs_name << "sensitivity_rhs" << i;
1299 
1300  return this->get_vector(sensitivity_rhs_name.str());
1301 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_sensitivity_solution() [1/2]

NumericVector< Number > & libMesh::System::get_sensitivity_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's solution sensitivity vectors, by default the one corresponding to the first parameter.

Definition at line 1140 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::sensitivity_solve().

1141 {
1142  std::ostringstream sensitivity_name;
1143  sensitivity_name << "sensitivity_solution" << i;
1144 
1145  return this->get_vector(sensitivity_name.str());
1146 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_sensitivity_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_sensitivity_solution ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's solution sensitivity vectors, by default the one corresponding to the first parameter.

Definition at line 1150 of file system.C.

References libMesh::System::get_vector().

1151 {
1152  std::ostringstream sensitivity_name;
1153  sensitivity_name << "sensitivity_solution" << i;
1154 
1155  return this->get_vector(sensitivity_name.str());
1156 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_shell_matrix()

ShellMatrix<Number>* libMesh::LinearImplicitSystem::get_shell_matrix ( )
inlineinherited
Returns
A pointer to the currently attached shell matrix, if any, otherwise nullptr.

Definition at line 182 of file linear_implicit_system.h.

References libMesh::LinearImplicitSystem::_shell_matrix.

182 { return _shell_matrix; }
ShellMatrix< Number > * _shell_matrix
User supplies shell matrix or nullptr if no shell matrix is used.

◆ get_system_matrix() [1/2]

const SparseMatrix< Number > & libMesh::ImplicitSystem::get_system_matrix ( ) const
inherited

◆ get_system_matrix() [2/2]

SparseMatrix< Number > & libMesh::ImplicitSystem::get_system_matrix ( )
inherited
Returns
A reference to the system's primary matrix.

Definition at line 1239 of file implicit_system.C.

References libMesh::System::get_matrix(), libMesh::libmesh_assert(), and libMesh::ImplicitSystem::matrix.

1240 {
1242  libmesh_assert_equal_to(&get_matrix("System Matrix"), matrix);
1243  return *matrix;
1244 }
libmesh_assert(ctx)
SparseMatrix< Number > * matrix
The system matrix.
const SparseMatrix< Number > & get_matrix(std::string_view mat_name) const
Definition: system.C:1073

◆ get_time_step()

unsigned int libMesh::RBTemporalDiscretization::get_time_step ( ) const
inherited

◆ get_vector() [1/4]

const NumericVector< Number > & libMesh::System::get_vector ( std::string_view  vec_name) const
inherited
Returns
A const reference to this system's additional vector named vec_name. Access is only granted when the vector is already properly initialized.

Definition at line 918 of file system.C.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), add_M_C_K_helmholtz(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), apply_initial(), assemble(), libMesh::System::compare(), libMesh::NewmarkSolver::compute_initial_accel(), libMesh::UnsteadySolver::du(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_adjoint_rhs(), libMesh::System::get_adjoint_solution(), libMesh::System::get_sensitivity_rhs(), libMesh::System::get_sensitivity_solution(), libMesh::System::get_weighted_sensitivity_adjoint_solution(), libMesh::System::get_weighted_sensitivity_solution(), libMesh::NewmarkSystem::initial_conditions(), AssembleOptimization::lower_and_upper_bounds(), main(), libMesh::NewmarkSolver::project_initial_accel(), libMesh::SecondOrderUnsteadySolver::project_initial_rate(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::FileSolutionHistory::retrieve(), libMesh::UnsteadySolver::retrieve_timestep(), libMesh::MemoryHistoryData::retrieve_vectors(), libMesh::TwostepTimeSolver::solve(), libMesh::FrequencySystem::solve(), libMesh::UnsteadySolver::update(), libMesh::NewmarkSystem::update_rhs(), and libMesh::NewmarkSystem::update_u_v_a().

919 {
920  return *(libmesh_map_find(_vectors, vec_name));
921 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ get_vector() [2/4]

NumericVector< Number > & libMesh::System::get_vector ( std::string_view  vec_name)
inherited
Returns
A writable reference to this system's additional vector named vec_name. Access is only granted when the vector is already properly initialized.

Definition at line 925 of file system.C.

References libMesh::System::_vectors.

926 {
927  return *(libmesh_map_find(_vectors, vec_name));
928 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ get_vector() [3/4]

const NumericVector< Number > & libMesh::System::get_vector ( const unsigned int  vec_num) const
inherited
Returns
A const reference to this system's additional vector number vec_num (where the vectors are counted starting with 0).

Definition at line 932 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

933 {
934  // If we don't have that many vectors, throw an error
935  libmesh_assert_less(vec_num, _vectors.size());
936 
937  // Otherwise return a reference to the vec_num'th vector
938  auto it = vectors_begin();
939  std::advance(it, vec_num);
940  return *(it->second);
941 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ get_vector() [4/4]

NumericVector< Number > & libMesh::System::get_vector ( const unsigned int  vec_num)
inherited
Returns
A writable reference to this system's additional vector number vec_num (where the vectors are counted starting with 0).

Definition at line 945 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

946 {
947  // If we don't have that many vectors, throw an error
948  libmesh_assert_less(vec_num, _vectors.size());
949 
950  // Otherwise return a reference to the vec_num'th vector
951  auto it = vectors_begin();
952  std::advance(it, vec_num);
953  return *(it->second);
954 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ get_weighted_sensitivity_adjoint_solution() [1/2]

NumericVector< Number > & libMesh::System::get_weighted_sensitivity_adjoint_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's weighted sensitivity adjoint solution vectors, by default the one corresponding to the first qoi.

Definition at line 1225 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), and libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

1226 {
1227  std::ostringstream adjoint_name;
1228  adjoint_name << "weighted_sensitivity_adjoint_solution" << i;
1229 
1230  return this->get_vector(adjoint_name.str());
1231 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_weighted_sensitivity_adjoint_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_weighted_sensitivity_adjoint_solution ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's weighted sensitivity adjoint solution vectors, by default the one corresponding to the first qoi.

Definition at line 1235 of file system.C.

References libMesh::System::get_vector().

1236 {
1237  std::ostringstream adjoint_name;
1238  adjoint_name << "weighted_sensitivity_adjoint_solution" << i;
1239 
1240  return this->get_vector(adjoint_name.str());
1241 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_weighted_sensitivity_solution() [1/2]

NumericVector< Number > & libMesh::System::get_weighted_sensitivity_solution ( )
inherited
Returns
A reference to the solution of the last weighted sensitivity solve

Definition at line 1167 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), and libMesh::ImplicitSystem::weighted_sensitivity_solve().

1168 {
1169  return this->get_vector("weighted_sensitivity_solution");
1170 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_weighted_sensitivity_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_weighted_sensitivity_solution ( ) const
inherited
Returns
A reference to the solution of the last weighted sensitivity solve

Definition at line 1174 of file system.C.

References libMesh::System::get_vector().

1175 {
1176  return this->get_vector("weighted_sensitivity_solution");
1177 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ greedy_termination_test()

bool TransientRBConstruction::greedy_termination_test ( Real  abs_greedy_error,
Real  initial_greedy_error,
int  count 
)
overridevirtual

Function that indicates when to terminate the Greedy basis training.

Reimplemented from libMesh::RBConstruction.

Definition at line 615 of file transient_rb_construction.C.

References get_max_truth_solves(), libMesh::RBConstruction::greedy_termination_test(), and libMesh::out.

618 {
619  if ((get_max_truth_solves()>0) && (count >= get_max_truth_solves()))
620  {
621  libMesh::out << "Maximum number of truth solves reached: max = "
622  << count << std::endl;
623  return true;
624  }
625 
626  return Parent::greedy_termination_test(abs_greedy_error, initial_greedy_error, count);
627 }
virtual bool greedy_termination_test(Real abs_greedy_error, Real initial_greedy_error, int count)
Function that indicates when to terminate the Greedy basis training.
int get_max_truth_solves() const
Get/set max_truth_solves, the maximum number of RB truth solves we are willing to compute in the tran...
OStreamProxy out

◆ has_constraint_object()

bool libMesh::System::has_constraint_object ( ) const
inherited
Returns
true if there is a user-defined constraint object attached to this object, false otherwise. Calling System:: get_constraint_object() when there is no user-defined constraint object attached leads to either undefined behavior (dereferencing a nullptr) or an assert (in dbg mode) so you should call this function first unless you are sure there is a user-defined constraint object attached.

Definition at line 2169 of file system.C.

References libMesh::System::_constrain_system_object.

2170 {
2171  return _constrain_system_object != nullptr;
2172 }
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081

◆ has_variable()

bool libMesh::System::has_variable ( std::string_view  var) const
inherited
Returns
true if a variable named var exists in this System

Definition at line 1550 of file system.C.

References libMesh::System::_variable_numbers.

Referenced by libMesh::GMVIO::copy_nodal_solution(), and main().

1551 {
1552  return _variable_numbers.count(var);
1553 }
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151

◆ have_matrix()

bool libMesh::System::have_matrix ( std::string_view  mat_name) const
inlineinherited
Returns
true if this System has a matrix associated with the given name, false otherwise.

Definition at line 1860 of file system.h.

References libMesh::System::_matrices.

Referenced by libMesh::EigenTimeSolver::init().

1860 { return _matrices.count(mat_name); };
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ have_vector()

bool libMesh::System::have_vector ( std::string_view  vec_name) const
inlineinherited
Returns
true if this System has a vector associated with the given name, false otherwise.

Definition at line 2469 of file system.h.

References libMesh::System::_vectors.

2470 {
2471  return (_vectors.count(vec_name));
2472 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ hide_output()

bool& libMesh::System::hide_output ( )
inlineinherited
Returns
A writable reference to a boolean that determines if this system can be written to file or not. If set to true, then EquationSystems::write will ignore this system.

Definition at line 1790 of file system.h.

References libMesh::System::_hide_output.

1790 { return _hide_output; }
bool _hide_output
Are we allowed to write this system to file? If _hide_output is true, then EquationSystems::write wil...
Definition: system.h:2248

◆ identify_variable_groups() [1/2]

bool libMesh::System::identify_variable_groups ( ) const
inlineinherited
Returns
true when VariableGroup structures should be automatically identified, false otherwise.

Definition at line 2445 of file system.h.

References libMesh::System::_identify_variable_groups.

Referenced by libMesh::System::add_variable(), and libMesh::System::add_variables().

2446 {
2448 }
bool _identify_variable_groups
true when VariableGroup structures should be automatically identified, false otherwise.
Definition: system.h:2216

◆ identify_variable_groups() [2/2]

void libMesh::System::identify_variable_groups ( const bool  ivg)
inlineinherited

Toggle automatic VariableGroup identification.

Definition at line 2453 of file system.h.

References libMesh::System::_identify_variable_groups.

2454 {
2456 }
bool _identify_variable_groups
true when VariableGroup structures should be automatically identified, false otherwise.
Definition: system.h:2216

◆ increment_constructor_count() [1/2]

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 183 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

184 {
185  libmesh_try
186  {
187  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
188  std::pair<unsigned int, unsigned int> & p = _counts[name];
189  p.first++;
190  }
191  libmesh_catch (...)
192  {
193  auto stream = libMesh::err.get();
194  stream->exceptions(stream->goodbit); // stream must not throw
195  libMesh::err << "Encountered unrecoverable error while calling "
196  << "ReferenceCounter::increment_constructor_count() "
197  << "for a(n) " << name << " object." << std::endl;
198  std::terminate();
199  }
200 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_constructor_count() [2/2]

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 183 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

184 {
185  libmesh_try
186  {
187  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
188  std::pair<unsigned int, unsigned int> & p = _counts[name];
189  p.first++;
190  }
191  libmesh_catch (...)
192  {
193  auto stream = libMesh::err.get();
194  stream->exceptions(stream->goodbit); // stream must not throw
195  libMesh::err << "Encountered unrecoverable error while calling "
196  << "ReferenceCounter::increment_constructor_count() "
197  << "for a(n) " << name << " object." << std::endl;
198  std::terminate();
199  }
200 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_destructor_count() [1/2]

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 207 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

208 {
209  libmesh_try
210  {
211  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
212  std::pair<unsigned int, unsigned int> & p = _counts[name];
213  p.second++;
214  }
215  libmesh_catch (...)
216  {
217  auto stream = libMesh::err.get();
218  stream->exceptions(stream->goodbit); // stream must not throw
219  libMesh::err << "Encountered unrecoverable error while calling "
220  << "ReferenceCounter::increment_destructor_count() "
221  << "for a(n) " << name << " object." << std::endl;
222  std::terminate();
223  }
224 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_destructor_count() [2/2]

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 207 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

208 {
209  libmesh_try
210  {
211  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
212  std::pair<unsigned int, unsigned int> & p = _counts[name];
213  p.second++;
214  }
215  libmesh_catch (...)
216  {
217  auto stream = libMesh::err.get();
218  stream->exceptions(stream->goodbit); // stream must not throw
219  libMesh::err << "Encountered unrecoverable error while calling "
220  << "ReferenceCounter::increment_destructor_count() "
221  << "for a(n) " << name << " object." << std::endl;
222  std::terminate();
223  }
224 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ init()

void libMesh::System::init ( )
inherited

Initializes degrees of freedom on the current mesh.

Sets the

Definition at line 189 of file system.C.

References libMesh::System::_basic_system_only, libMesh::System::init_data(), libMesh::System::is_initialized(), libMesh::libmesh_assert(), libMesh::System::n_vars(), and libMesh::System::user_initialization().

190 {
191  parallel_object_only();
192 
193  // Calling init() twice on the same system currently works evil
194  // magic, whether done directly or via EquationSystems::read()
195  libmesh_assert(!this->is_initialized());
196 
197  // First initialize any required data:
198  // either only the basic System data
199  if (_basic_system_only)
201  // or all the derived class' data too
202  else
203  this->init_data();
204 
205  // If no variables have been added to this system
206  // don't do anything
207  if (!this->n_vars())
208  return;
209 
210  // Then call the user-provided initialization function
211  this->user_initialization();
212 }
bool _basic_system_only
Holds true if the components of more advanced system types (e.g.
Definition: system.h:2204
virtual void init_data()
Initializes the data for the system.
Definition: system.C:216
virtual void user_initialization()
Calls user&#39;s attached initialization function, or is overridden by the user in derived classes...
Definition: system.C:2245
bool is_initialized()
Definition: system.h:2333
libmesh_assert(ctx)
unsigned int n_vars() const
Definition: system.h:2349

◆ init_context()

virtual void libMesh::RBConstruction::init_context ( FEMContext )
inlineprotectedvirtualinherited

Initialize the FEMContext prior to performing an element loop.

Reimplement this in derived classes in order to call FE::get_*() as the particular physics requires.

Reimplemented in SimpleRBConstruction, SimpleRBConstruction, SimpleRBConstruction, SimpleRBConstruction, SimpleRBConstruction, and ElasticityRBConstruction.

Definition at line 809 of file rb_construction.h.

Referenced by libMesh::RBConstruction::add_scaled_matrix_and_vector().

810  {
811  // Failing to rederive init_context() means your FE objects don't
812  // know what to compute.
813  libmesh_deprecated();
814  }

◆ init_data()

void libMesh::RBConstructionBase< LinearImplicitSystem >::init_data ( )
protectedvirtualinherited

Initializes the member data fields associated with the system, so that, e.g., assemble() may be used.

Reimplemented from libMesh::LinearImplicitSystem.

Reimplemented in SimpleRBConstruction, SimpleRBConstruction, SimpleRBConstruction, SimpleRBConstruction, SimpleRBConstruction, SimpleRBConstruction, and ElasticityRBConstruction.

Definition at line 122 of file rb_construction_base.C.

Referenced by SimpleRBConstruction::init_data().

123 {
124  Base::init_data();
125 
126  // Initialize the inner product storage vector, which is useful for
127  // storing intermediate results when evaluating inner products
129  inner_product_storage_vector->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
130 }
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
static std::unique_ptr< NumericVector< Number > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...

◆ init_matrices()

void libMesh::System::init_matrices ( )
protectedvirtualinherited

Initializes the matrices associated with this system.

Reimplemented in libMesh::EigenSystem.

Definition at line 326 of file system.C.

References libMesh::System::_matrices, libMesh::System::_matrices_initialized, libMesh::System::_matrix_types, libMesh::DofMap::attach_matrix(), libMesh::DofMap::compute_sparsity(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::SparseMatrix< T >::initialized(), libMesh::DofMap::is_attached(), and libMesh::libmesh_assert().

Referenced by libMesh::System::init_data(), and libMesh::EigenSystem::init_matrices().

327 {
328  parallel_object_only();
329 
330  // No matrices to init
331  if (_matrices.empty())
332  {
333  // any future matrices to be added will need their own
334  // initialization
335  _matrices_initialized = true;
336 
337  return;
338  }
339 
340  // Check for quick return in case the first matrix
341  // (and by extension all the matrices) has already
342  // been initialized
343  if (_matrices.begin()->second->initialized())
344  {
346  return;
347  }
348 
349  _matrices_initialized = true;
350 
351  // Tell the matrices about the dof map, and vice versa
352  for (auto & pr : _matrices)
353  {
354  SparseMatrix<Number> & m = *(pr.second);
355  libmesh_assert (!m.initialized());
356 
357  // We want to allow repeated init() on systems, but we don't
358  // want to attach the same matrix to the DofMap twice
359  if (!this->get_dof_map().is_attached(m))
360  this->get_dof_map().attach_matrix(m);
361  }
362 
363  // Compute the sparsity pattern for the current
364  // mesh and DOF distribution. This also updates
365  // additional matrices, \p DofMap now knows them
366  this->get_dof_map().compute_sparsity(this->get_mesh());
367 
368  // Initialize matrices and set to zero
369  for (auto & pr : _matrices)
370  {
371  pr.second->init(_matrix_types[pr.first]);
372  pr.second->zero();
373  }
374 }
bool is_attached(SparseMatrix< Number > &matrix)
Matrices should not be attached more than once.
Definition: dof_map.C:333
void attach_matrix(SparseMatrix< Number > &matrix)
Additional matrices may be attached to this DofMap.
Definition: dof_map.C:278
const MeshBase & get_mesh() const
Definition: system.h:2277
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181
libmesh_assert(ctx)
std::map< std::string, ParallelType, std::less<> > _matrix_types
Holds the types of the matrices.
Definition: system.h:2186
template class LIBMESH_EXPORT SparseMatrix< Number >
bool _matrices_initialized
false when additional matrices being added require initialization, true otherwise.
Definition: system.h:2191
void compute_sparsity(const MeshBase &)
Computes the sparsity pattern for the matrices corresponding to proc_id and sends that data to Linear...
Definition: dof_map.C:1816
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ init_qois()

void libMesh::System::init_qois ( unsigned int  n_qois)
inherited

Accessors for qoi and qoi_error_estimates vectors.

Definition at line 2319 of file system.C.

References libMesh::System::n_qois(), libMesh::System::qoi, and libMesh::System::qoi_error_estimates.

Referenced by CoupledSystemQoI::init_qoi_count(), LaplaceQoI::init_qoi_count(), and main().

2320 {
2321  qoi.resize(n_qois);
2322  qoi_error_estimates.resize(n_qois);
2323 }
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ initialize_parameters() [1/2]

void libMesh::RBParametrized::initialize_parameters ( const RBParameters mu_min_in,
const RBParameters mu_max_in,
const std::map< std::string, std::vector< Real >> &  discrete_parameter_values 
)
inherited

Initialize the parameter ranges and set current_parameters.

Parameter ranges are inclusive. The input min/max RBParameters should have exactly 1 sample each. Vector-valued samples are not currently supported for the min/max parameters or for discrete parameters.

Definition at line 53 of file rb_parametrized.C.

References libMesh::RBParametrized::_discrete_parameter_values, libMesh::RBParameters::begin_serialized(), libMesh::RBParameters::end_serialized(), libMesh::RBParameters::n_parameters(), libMesh::RBParameters::n_samples(), libMesh::Quality::name(), libMesh::RBParametrized::parameters_initialized, libMesh::RBParametrized::parameters_max, libMesh::RBParametrized::parameters_min, libMesh::Real, libMesh::RBParametrized::set_parameters(), and libMesh::RBParameters::set_value().

Referenced by libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBDataDeserialization::load_parameter_ranges(), libMesh::RBSCMConstruction::perform_SCM_greedy(), libMesh::RBSCMConstruction::process_parameters_file(), libMesh::RBParametrized::read_parameter_data_from_files(), libMesh::RBEIMConstruction::set_rb_construction_parameters(), libMesh::RBConstruction::set_rb_construction_parameters(), RBParametersTest::testRBParametrized(), libMesh::RBEIMConstruction::train_eim_approximation_with_greedy(), libMesh::RBEIMConstruction::train_eim_approximation_with_POD(), libMesh::RBConstruction::train_reduced_basis_with_greedy(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

56 {
57  // Check that the min/max vectors have the same size.
58  libmesh_error_msg_if(mu_min_in.n_parameters() != mu_max_in.n_parameters(),
59  "Error: Invalid mu_min/mu_max in initialize_parameters(), different number of parameters.");
60  libmesh_error_msg_if(mu_min_in.n_samples() != 1 ||
61  mu_max_in.n_samples() != 1,
62  "Error: Invalid mu_min/mu_max in initialize_parameters(), only 1 sample supported.");
63 
64  // Ensure all the values are valid for min and max.
65  auto pr_min = mu_min_in.begin_serialized();
66  auto pr_max = mu_max_in.begin_serialized();
67  for (; pr_min != mu_min_in.end_serialized(); ++pr_min, ++pr_max)
68  libmesh_error_msg_if((*pr_min).second > (*pr_max).second,
69  "Error: Invalid mu_min/mu_max in RBParameters constructor.");
70 
71  parameters_min = mu_min_in;
72  parameters_max = mu_max_in;
73 
74  // Add in min/max values due to the discrete parameters
75  for (const auto & [name, vals] : discrete_parameter_values)
76  {
77  libmesh_error_msg_if(vals.empty(), "Error: List of discrete parameters for " << name << " is empty.");
78 
79  Real min_val = *std::min_element(vals.begin(), vals.end());
80  Real max_val = *std::max_element(vals.begin(), vals.end());
81 
82  libmesh_assert_less_equal(min_val, max_val);
83 
84  parameters_min.set_value(name, min_val);
85  parameters_max.set_value(name, max_val);
86  }
87 
88  _discrete_parameter_values = discrete_parameter_values;
89 
91 
92  // Initialize the current parameters to parameters_min
94 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.
std::map< std::string, std::vector< Real > > _discrete_parameter_values
Map that defines the allowable values of any discrete parameters.
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void set_value(const std::string &param_name, Real value)
Set the value of the specified parameter.

◆ initialize_parameters() [2/2]

void libMesh::RBParametrized::initialize_parameters ( const RBParametrized rb_parametrized)
inherited

Initialize the parameter ranges and set current_parameters.

Definition at line 96 of file rb_parametrized.C.

References libMesh::RBParametrized::get_discrete_parameter_values(), libMesh::RBParametrized::get_parameters_max(), libMesh::RBParametrized::get_parameters_min(), and libMesh::RBParametrized::initialize_parameters().

97 {
98  initialize_parameters(rb_parametrized.get_parameters_min(),
99  rb_parametrized.get_parameters_max(),
100  rb_parametrized.get_discrete_parameter_values());
101 }
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.

◆ initialize_rb_construction()

void TransientRBConstruction::initialize_rb_construction ( bool  skip_matrix_assembly = false,
bool  skip_vector_assembly = false 
)
overridevirtual

Allocate all the data structures necessary for the construction stage of the RB method.

This function also performs matrix and vector assembly of the "truth" affine expansion.

Override to check that theta and assembly expansions are consistently sized.

Reimplemented from libMesh::RBConstruction.

Definition at line 99 of file transient_rb_construction.C.

References libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBConstruction::get_rb_assembly_expansion(), libMesh::RBConstruction::get_rb_theta_expansion(), and libMesh::RBConstruction::initialize_rb_construction().

101 {
102  // Check that the theta and assembly objects are consistently sized
103 #ifndef NDEBUG
104  TransientRBThetaExpansion & trans_theta_expansion =
105  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
106 
107  TransientRBAssemblyExpansion & trans_assembly_expansion =
108  cast_ref<TransientRBAssemblyExpansion &>(get_rb_assembly_expansion());
109 #endif
110  // This assert only gets called if DEBUG is on
111  libmesh_assert_equal_to (trans_theta_expansion.get_n_M_terms(), trans_assembly_expansion.get_n_M_terms());
112 
113  Parent::initialize_rb_construction(skip_matrix_assembly, skip_vector_assembly);
114 }
virtual void initialize_rb_construction(bool skip_matrix_assembly=false, bool skip_vector_assembly=false)
Allocate all the data structures necessary for the construction stage of the RB method.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
RBAssemblyExpansion & get_rb_assembly_expansion()

◆ initialize_training_parameters()

void libMesh::RBConstructionBase< LinearImplicitSystem >::initialize_training_parameters ( const RBParameters mu_min,
const RBParameters mu_max,
const unsigned int  n_global_training_samples,
const std::map< std::string, bool > &  log_param_scale,
const bool  deterministic = true 
)
virtualinherited

Initialize the parameter ranges and indicate whether deterministic or random training parameters should be used and whether or not we want the parameters to be scaled logarithmically.

n_global_training_samples is the total number of samples to generate, which will be distributed across all the processors.

Definition at line 285 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

290 {
291  if (!is_quiet())
292  {
293  // Print out some info about the training set initialization
294  libMesh::out << "Initializing training parameters with "
295  << (deterministic ? "deterministic " : "random " )
296  << "training set..." << std::endl;
297 
298  for (const auto & pr : log_param_scale)
299  libMesh::out << "Parameter "
300  << pr.first
301  << ": log scaling = "
302  << pr.second
303  << std::endl;
304 
305  libMesh::out << std::endl;
306  }
307 
308  if (deterministic)
309  {
310  const auto [first_local_index, last_local_index] =
312  log_param_scale,
314  n_global_training_samples,
315  mu_min,
316  mu_max,
318  _first_local_index = first_local_index;
319  _n_local_training_samples = last_local_index-first_local_index;
320  }
321  else
322  {
323  // Generate random training samples for all parameters
324  const auto [first_local_index, last_local_index] =
326  log_param_scale,
328  n_global_training_samples,
329  mu_min,
330  mu_max,
333  _first_local_index = first_local_index;
334  _n_local_training_samples = last_local_index-first_local_index;
335  }
337 
338  if (!serial_training_set)
340 
341  // For each parameter that only allows discrete values, we "snap" to the nearest
342  // allowable discrete value
343  if (get_n_discrete_params() > 0)
344  {
345  for (auto & [param_name, sample_vector] : _training_parameters)
346  {
347  if (is_discrete_parameter(param_name))
348  {
349  std::vector<Real> discrete_values =
350  get_discrete_parameter_values().find(param_name)->second;
351  for (const auto sample_idx : index_range(sample_vector))
352  {
353  // Round all values to the closest discrete value.
354  std::vector<Real> discretized_vector(sample_vector[sample_idx].size());
355  std::transform(sample_vector[sample_idx].cbegin(),
356  sample_vector[sample_idx].cend(),
357  discretized_vector.begin(),
358  [&discrete_values](const Real & val) {
359  return get_closest_value(val, discrete_values);
360  });
361  sample_vector[sample_idx] = discretized_vector;
362  }
363  }
364  }
365  }
366 
368 }
static std::pair< std::size_t, std::size_t > generate_training_parameters_random(const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const int training_parameters_random_seed=-1, const bool serial_training_set=false)
Static helper function for generating a randomized set of parameters.
static std::pair< std::size_t, std::size_t > generate_training_parameters_deterministic(const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const bool serial_training_set=false)
Static helper function for generating a deterministic set of parameters.
void sum(T &r) const
const Parallel::Communicator & comm() const
bool is_quiet() const
Is the system in quiet mode?
static Real get_closest_value(Real value, const std::vector< Real > &list_of_values)
unsigned int get_n_discrete_params() const
Get the number of discrete parameters.
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values() const
Get a const reference to the discrete parameter values.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
OStreamProxy out
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
int _training_parameters_random_seed
If < 0, use std::time() * processor_id() to seed the random number generator for the training paramet...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:111
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.
bool is_discrete_parameter(const std::string &mu_name) const
Is parameter mu_name discrete?

◆ initialize_truth()

void TransientRBConstruction::initialize_truth ( )
protectedvirtual

This function imposes a truth initial condition, defaults to zero initial condition if the flag nonzero_initialization is true.

Definition at line 707 of file transient_rb_construction.C.

References init_filename, nonzero_initialization, libMesh::READ, libMesh::System::read_serialized_data(), libMesh::System::solution, and libMesh::System::update().

Referenced by add_IC_to_RB_space(), assemble_affine_expansion(), truth_solve(), and update_RB_initial_condition_all_N().

708 {
710  {
711  // Use System::read_serialized_data to read the initial condition
712  // into this->solution
713  Xdr IC_data(init_filename, READ);
714  read_serialized_data(IC_data, false);
715  }
716  else
717  {
718  // Otherwise zero out the solution as a default
719  this->solution->zero();
720  }
721  this->solution->close();
722  this->update();
723 }
std::string init_filename
The filename of the file containing the initial condition projected onto the truth mesh...
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
bool nonzero_initialization
Boolean flag to indicate whether we are using a non-zero initialization.
virtual void update()
Update the local values to reflect the solution on neighboring processors.
Definition: system.C:493
void read_serialized_data(Xdr &io, const bool read_additional_data=true)
Reads additional data, namely vectors, for this System.
Definition: system_io.C:680

◆ is_adjoint_already_solved()

bool libMesh::System::is_adjoint_already_solved ( ) const
inlineinherited

Accessor for the adjoint_already_solved boolean.

Definition at line 406 of file system.h.

References libMesh::System::adjoint_already_solved.

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

407  { return adjoint_already_solved;}
bool adjoint_already_solved
Has the adjoint problem already been solved? If the user sets adjoint_already_solved to true...
Definition: system.h:2242

◆ is_discrete_parameter()

bool libMesh::RBParametrized::is_discrete_parameter ( const std::string &  mu_name) const
inherited

Is parameter mu_name discrete?

Definition at line 363 of file rb_parametrized.C.

References libMesh::RBParametrized::_discrete_parameter_values, and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBEIMConstruction::print_info(), libMesh::RBConstruction::print_info(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

364 {
365  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::is_discrete_parameter");
366 
367  return (_discrete_parameter_values.find(mu_name) != _discrete_parameter_values.end());
368 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
std::map< std::string, std::vector< Real > > _discrete_parameter_values
Map that defines the allowable values of any discrete parameters.

◆ is_initialized()

bool libMesh::System::is_initialized ( )
inlineinherited
Returns
true iff this system has been initialized.

Definition at line 2333 of file system.h.

References libMesh::System::_is_initialized.

Referenced by libMesh::System::add_variable(), libMesh::System::add_variables(), and libMesh::System::init().

2334 {
2335  return _is_initialized;
2336 }
bool _is_initialized
true when additional vectors and variables do not require immediate initialization, false otherwise.
Definition: system.h:2210

◆ is_quiet()

bool libMesh::RBConstructionBase< LinearImplicitSystem >::is_quiet ( ) const
inlineinherited

◆ is_rb_eval_initialized()

bool libMesh::RBConstruction::is_rb_eval_initialized ( ) const
inherited
Returns
true if rb_eval is initialized. False, otherwise.

Definition at line 189 of file rb_construction.C.

References libMesh::RBConstruction::rb_eval.

Referenced by print_info(), and libMesh::RBConstruction::print_info().

190 {
191  return (rb_eval != nullptr);
192 }
RBEvaluation * rb_eval
The current RBEvaluation object we are using to perform the Evaluation stage of the reduced basis met...

◆ load_basis_function()

void libMesh::RBConstruction::load_basis_function ( unsigned int  i)
virtualinherited

Load the i^th RB function into the RBConstruction solution vector.

Definition at line 1651 of file rb_construction.C.

References libMesh::RBEvaluation::get_basis_function(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::System::solution, and libMesh::System::update().

Referenced by main().

1652 {
1653  LOG_SCOPE("load_basis_function()", "RBConstruction");
1654 
1655  libmesh_assert_less (i, get_rb_evaluation().get_n_basis_functions());
1656 
1658 
1659  this->update();
1660 }
NumericVector< Number > & get_basis_function(unsigned int i)
Get a reference to the i^th basis function.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
virtual void update()
Update the local values to reflect the solution on neighboring processors.
Definition: system.C:493
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ load_rb_solution()

void TransientRBConstruction::load_rb_solution ( )
overridevirtual

Load the RB solution from the current time-level into the libMesh solution vector.

Reimplemented from libMesh::RBConstruction.

Definition at line 884 of file transient_rb_construction.C.

References libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBTemporalDiscretization::get_time_step(), libMesh::TransientRBEvaluation::RB_temporal_solution_data, libMesh::System::solution, and libMesh::System::update().

885 {
886  LOG_SCOPE("load_rb_solution()", "TransientRBConstruction");
887 
888  solution->zero();
889 
890  const unsigned int time_step = get_time_step();
891 
892  TransientRBEvaluation & trans_rb_eval = cast_ref<TransientRBEvaluation &>(get_rb_evaluation());
893  DenseVector<Number> RB_solution_vector_k = trans_rb_eval.RB_temporal_solution_data[time_step];
894 
895  libmesh_error_msg_if(RB_solution_vector_k.size() > get_rb_evaluation().get_n_basis_functions(),
896  "ERROR: rb_eval object contains "
898  << " basis functions. RB_solution vector contains "
899  << RB_solution_vector_k.size()
900  << " entries. RB_solution in TransientRBConstruction::load_rb_solution is too long!");
901 
902  for (unsigned int i=0; i<RB_solution_vector_k.size(); i++)
903  solution->add(RB_solution_vector_k(i), get_rb_evaluation().get_basis_function(i));
904 
905  update();
906 }
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
unsigned int get_time_step() const
Get/set the current time-step.
virtual void update()
Update the local values to reflect the solution on neighboring processors.
Definition: system.C:493
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ load_training_set()

void libMesh::RBConstructionBase< LinearImplicitSystem >::load_training_set ( const std::map< std::string, std::vector< RBParameter >> &  new_training_set)
virtualinherited

Overwrite the training parameters with new_training_set.

This training set is assumed to contain only the samples local to this processor.

Definition at line 371 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

372 {
373  // Make sure we're running this on all processors at the same time
374  libmesh_parallel_only(this->comm());
375 
376  // First, make sure that an initial training set has already been generated
377  libmesh_error_msg_if(!_training_parameters_initialized,
378  "Error: load_training_set cannot be used to initialize parameters");
379 
380  // Make sure that the training set has the correct number of parameters
381  const unsigned int n_params = get_n_params();
382  libmesh_error_msg_if(new_training_set.size() > n_params,
383  "Error: new_training_set should not have more than get_n_params() parameters.");
384 
385  // Check that (new_training_set.size() == get_n_params()) is the same on all processes so that
386  // we go into the same branch of the "if" statement below on all processes.
387  const bool size_matches = (new_training_set.size() == n_params);
388  this->comm().verify(size_matches);
389 
390  if (size_matches)
391  {
392  // If new_training_set stores values for all parameters, then we overwrite
393  // _training_parameters with new_training_set.
394 
395  // Get the number of local and global training parameters
396  _first_local_index = 0;
398  cast_int<numeric_index_type>(new_training_set.begin()->second.size());
400 
401  if (!serial_training_set)
402  {
403  this->comm().sum(_n_global_training_samples);
404 
405  // Set the first/last indices.
406  std::vector<numeric_index_type> local_sizes (this->n_processors(), 0);
407  local_sizes[this->processor_id()] = _n_local_training_samples;
408  this->comm().sum(local_sizes);
409 
410  // first_local_index is the sum of local_sizes
411  // for all processor ids less than ours
412  for (auto p : make_range(this->processor_id()))
413  _first_local_index += local_sizes[p];
414  }
415 
416  // Ensure that the parameters are the same.
417  for (const auto & pr : _training_parameters)
418  libmesh_error_msg_if(!new_training_set.count(pr.first),
419  "Parameters must be identical in order to overwrite dataset.");
420 
421  // Copy the values from the new_training_set to the internal training_parameters.
422  _training_parameters = new_training_set;
423  }
424  else
425  {
426  // If new_training_set stores values for a subset of the parameters, then we keep the
427  // length of training_parameters unchanged and overwrite the entries of the specified
428  // parameters from new_training_set. Note that we repeatedly loop over new_training_set
429  // to fill up the entire length of the sample_vector.
430  for (auto & [param_name, sample_vector]: _training_parameters)
431  {
432  if (new_training_set.count(param_name))
433  {
434  for (const auto i : make_range(get_local_n_training_samples()))
435  {
436  const unsigned int num_new_samples = libmesh_map_find(new_training_set,param_name).size();
437  libmesh_error_msg_if (num_new_samples==0, "new_training_set set should not be empty");
438 
439  const unsigned int new_training_set_index = i % num_new_samples;
440  sample_vector[i] = libmesh_map_find(new_training_set,param_name)[new_training_set_index];
441  }
442  }
443  }
444  }
445 }
bool verify(const T &r) const
void sum(T &r) const
const Parallel::Communicator & comm() const
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
processor_id_type n_processors() const
numeric_index_type get_local_n_training_samples() const
Get the total number of training samples local to this processor.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
processor_id_type processor_id() const
unsigned int get_n_params() const
Get the number of parameters.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ local_dof_indices()

void libMesh::System::local_dof_indices ( const unsigned int  var,
std::set< dof_id_type > &  var_indices 
) const
inherited

Fills the std::set with the degrees of freedom on the local processor corresponding the the variable number passed in.

Definition at line 1575 of file system.C.

References libMesh::DofMap::dof_indices(), libMesh::DofMap::end_dof(), libMesh::DofMap::first_dof(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), and libMesh::libmesh_assert().

Referenced by libMesh::System::discrete_var_norm(), SystemsTest::testBlockRestrictedVarNDofs(), and libMesh::DirectSolutionTransfer::transfer().

1577 {
1578  // Make sure the set is clear
1579  var_indices.clear();
1580 
1581  std::vector<dof_id_type> dof_indices;
1582 
1583  const dof_id_type
1584  first_local = this->get_dof_map().first_dof(),
1585  end_local = this->get_dof_map().end_dof();
1586 
1587  // Begin the loop over the elements
1588  for (const auto & elem : this->get_mesh().active_local_element_ptr_range())
1589  {
1590  this->get_dof_map().dof_indices (elem, dof_indices, var);
1591 
1592  for (dof_id_type dof : dof_indices)
1593  //If the dof is owned by the local processor
1594  if (first_local <= dof && dof < end_local)
1595  var_indices.insert(dof);
1596  }
1597 
1598  // we may have missed assigning DOFs to nodes that we own
1599  // but to which we have no connected elements matching our
1600  // variable restriction criterion. this will happen, for example,
1601  // if variable V is restricted to subdomain S. We may not own
1602  // any elements which live in S, but we may own nodes which are
1603  // *connected* to elements which do.
1604  for (const auto & node : this->get_mesh().local_node_ptr_range())
1605  {
1606  libmesh_assert(node);
1607  this->get_dof_map().dof_indices (node, dof_indices, var);
1608  for (auto dof : dof_indices)
1609  if (first_local <= dof && dof < end_local)
1610  var_indices.insert(dof);
1611  }
1612 }
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
Fills the vector di with the global degree of freedom indices for the element.
Definition: dof_map.C:1992
const MeshBase & get_mesh() const
Definition: system.h:2277
libmesh_assert(ctx)
dof_id_type first_dof(const processor_id_type proc) const
Definition: dof_map.h:684
dof_id_type end_dof(const processor_id_type proc) const
Definition: dof_map.h:708
const DofMap & get_dof_map() const
Definition: system.h:2293
uint8_t dof_id_type
Definition: id_types.h:67

◆ mass_matrix_scaled_matvec()

void TransientRBConstruction::mass_matrix_scaled_matvec ( Number  scalar,
NumericVector< Number > &  dest,
NumericVector< Number > &  arg 
)

Perform a matrix-vector multiplication with the current mass matrix and store the result in dest.

Definition at line 375 of file transient_rb_construction.C.

References libMesh::NumericVector< T >::add(), libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::TransientRBThetaExpansion::eval_M_theta(), get_M_q(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBParametrized::get_parameters(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, libMesh::SparseMatrix< T >::vector_mult(), and libMesh::NumericVector< T >::zero().

Referenced by truth_assembly().

378 {
379  LOG_SCOPE("mass_matrix_scaled_matvec()", "TransientRBConstruction");
380 
381  dest.zero();
382 
383  const RBParameters & mu = get_parameters();
384 
385  TransientRBThetaExpansion & trans_theta_expansion =
386  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
387 
388  const unsigned int Q_m = trans_theta_expansion.get_n_M_terms();
389 
390  std::unique_ptr<NumericVector<Number>> temp_vec = NumericVector<Number>::build(this->comm());
391  temp_vec->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
392 
393  for (unsigned int q=0; q<Q_m; q++)
394  {
395  get_M_q(q)->vector_mult(*temp_vec, arg);
396  dest.add(scalar * trans_theta_expansion.eval_M_theta(q,mu), *temp_vec);
397  }
398 }
SparseMatrix< Number > * get_M_q(unsigned int q)
Get a pointer to M_q.
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
virtual void zero()=0
Set all entries to zero.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
const RBParameters & get_parameters() const
Get the current parameters.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
virtual void add(const numeric_index_type i, const T value)=0
Adds value to the vector entry specified by i.

◆ n_active_dofs()

dof_id_type libMesh::System::n_active_dofs ( ) const
inlineinherited
Returns
The number of active degrees of freedom for this System.

Definition at line 2461 of file system.h.

References libMesh::System::n_constrained_dofs(), and libMesh::System::n_dofs().

2462 {
2463  return this->n_dofs() - this->n_constrained_dofs();
2464 }
dof_id_type n_dofs() const
Definition: system.C:113
dof_id_type n_constrained_dofs() const
Definition: system.C:120

◆ n_components()

unsigned int libMesh::System::n_components ( ) const
inlineinherited
Returns
The total number of scalar components in the system's variables. This will equal n_vars() in the case of all scalar-valued variables.

Definition at line 2365 of file system.h.

References libMesh::System::_variables, libMesh::Variable::first_scalar_number(), and libMesh::Variable::n_components().

Referenced by libMesh::System::add_variables().

2366 {
2367  if (_variables.empty())
2368  return 0;
2369 
2370  const Variable & last = _variables.back();
2371  return last.first_scalar_number() + last.n_components();
2372 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ n_constrained_dofs()

dof_id_type libMesh::System::n_constrained_dofs ( ) const
inherited
Returns
The total number of constrained degrees of freedom in the system.

Definition at line 120 of file system.C.

References libMesh::System::_dof_map.

Referenced by libMesh::System::get_info(), libMesh::System::n_active_dofs(), libMesh::EigenSystem::solve(), and BoundaryInfoTest::testShellFaceConstraints().

121 {
122 #ifdef LIBMESH_ENABLE_CONSTRAINTS
123 
124  return _dof_map->n_constrained_dofs();
125 
126 #else
127 
128  return 0;
129 
130 #endif
131 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ n_dofs()

dof_id_type libMesh::System::n_dofs ( ) const
inherited
Returns
The number of degrees of freedom in the system

Definition at line 113 of file system.C.

References libMesh::System::_dof_map.

Referenced by add_IC_to_RB_space(), libMesh::System::add_vector(), allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), assemble_affine_expansion(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), enrich_RB_space(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_info(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), libMesh::System::init_data(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), main(), mass_matrix_scaled_matvec(), libMesh::System::n_active_dofs(), libMesh::CondensedEigenSystem::n_global_non_condensed_dofs(), libMesh::FEMSystem::numerical_jacobian(), libMesh::RBSCMConstruction::perform_SCM_greedy(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::System::restrict_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), set_error_temporal_data(), SystemsTest::test100KVariables(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), SystemsTest::testPostInitAddVector(), SystemsTest::testPostInitAddVectorTypeChange(), SystemsTest::testProjectCubeWithMeshFunction(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::MeshFunctionSolutionTransfer::transfer(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), update_RB_initial_condition_all_N(), update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

114 {
115  return _dof_map->n_dofs();
116 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ n_linear_iterations()

unsigned int libMesh::LinearImplicitSystem::n_linear_iterations ( ) const
inlineinherited
Returns
The number of iterations taken for the most recent linear solve.

Definition at line 155 of file linear_implicit_system.h.

References libMesh::LinearImplicitSystem::_n_linear_iterations.

Referenced by libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), main(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

155 { return _n_linear_iterations; }
unsigned int _n_linear_iterations
The number of linear iterations required to solve the linear system Ax=b.

◆ n_local_constrained_dofs()

dof_id_type libMesh::System::n_local_constrained_dofs ( ) const
inherited
Returns
The number of constrained degrees of freedom on this processor.

Definition at line 135 of file system.C.

References libMesh::System::_dof_map.

Referenced by libMesh::System::get_info().

136 {
137 #ifdef LIBMESH_ENABLE_CONSTRAINTS
138 
139  return _dof_map->n_local_constrained_dofs();
140 
141 #else
142 
143  return 0;
144 
145 #endif
146 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ n_local_dofs()

dof_id_type libMesh::System::n_local_dofs ( ) const
inherited
Returns
The number of degrees of freedom local to this processor

Definition at line 150 of file system.C.

References libMesh::System::_dof_map, and libMesh::ParallelObject::processor_id().

Referenced by add_IC_to_RB_space(), libMesh::System::add_vector(), allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), assemble_affine_expansion(), libMesh::PetscDMWrapper::build_section(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), enrich_RB_space(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_info(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), libMesh::System::init_data(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), main(), mass_matrix_scaled_matvec(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::System::restrict_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), set_error_temporal_data(), MeshFunctionTest::test_p_level(), libMesh::RBConstruction::train_reduced_basis_with_POD(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), update_RB_initial_condition_all_N(), update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

151 {
152  return _dof_map->n_dofs_on_processor (this->processor_id());
153 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
processor_id_type processor_id() const

◆ n_matrices()

unsigned int libMesh::System::n_matrices ( ) const
inlineinherited
Returns
The number of matrices handled by this system. This is the size of the _matrices map

Definition at line 2594 of file system.h.

References libMesh::System::_matrices.

Referenced by libMesh::ImplicitSystem::add_matrices(), and libMesh::System::get_info().

2595 {
2596  return cast_int<unsigned int>(_matrices.size());
2597 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ n_objects() [1/2]

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 85 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

Referenced by libMesh::LibMeshInit::~LibMeshInit().

86  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ n_objects() [2/2]

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 85 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

Referenced by libMesh::LibMeshInit::~LibMeshInit().

86  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ n_processors()

processor_id_type libMesh::ParallelObject::n_processors ( ) const
inlineinherited
Returns
The number of processors in the group.

Definition at line 103 of file parallel_object.h.

References libMesh::ParallelObject::_communicator, libMesh::libmesh_assert(), and TIMPI::Communicator::size().

Referenced by libMesh::Partitioner::_find_global_index_by_pid_map(), libMesh::BoundaryInfo::_find_id_maps(), libMesh::DofMap::add_constraints_to_send_list(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DistributedMesh::add_elem(), libMesh::DofMap::add_neighbors_to_send_list(), libMesh::DistributedMesh::add_node(), libMesh::System::add_vector(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::FEMSystem::assembly(), libMesh::Nemesis_IO::assert_symmetric_cmaps(), libMesh::Partitioner::assign_partitioning(), libMesh::AztecLinearSolver< T >::AztecLinearSolver(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::DistributedMesh::clear(), libMesh::DistributedMesh::clear_elems(), libMesh::Nemesis_IO_Helper::compute_border_node_ids(), libMesh::Nemesis_IO_Helper::construct_nemesis_filename(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), libMesh::UnstructuredMesh::create_pid_mesh(), libMesh::MeshTools::create_processor_bounding_box(), libMesh::DofMap::distribute_dofs(), libMesh::DofMap::distribute_scalar_dofs(), libMesh::DistributedMesh::DistributedMesh(), libMesh::EnsightIO::EnsightIO(), libMesh::RBEIMEvaluation::gather_bfs(), libMesh::MeshBase::get_info(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::Nemesis_IO_Helper::initialize(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::DistributedMesh::insert_elem(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_new_node_procids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::DofMap::local_variable_indices(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshBase::n_active_elem_on_proc(), libMesh::MeshBase::n_elem_on_proc(), libMesh::MeshBase::n_nodes_on_proc(), libMesh::RBEIMEvaluation::node_gather_bfs(), libMesh::Partitioner::partition(), libMesh::MeshBase::partition(), libMesh::Partitioner::partition_unpartitioned_elements(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::DofMap::prepare_send_list(), libMesh::DofMap::print_dof_constraints(), libMesh::NameBasedIO::read(), libMesh::Nemesis_IO::read(), libMesh::CheckpointIO::read(), libMesh::CheckpointIO::read_connectivity(), libMesh::XdrIO::read_header(), libMesh::CheckpointIO::read_nodes(), libMesh::System::read_parallel_data(), libMesh::System::read_SCALAR_dofs(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::System::read_serialized_vector(), libMesh::DistributedMesh::renumber_dof_objects(), libMesh::Partitioner::repartition(), OverlappingFunctorTest::run_partitioner_test(), libMesh::DofMap::scatter_constraints(), libMesh::DistributedMesh::set_next_unique_id(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::PetscDMWrapper::set_point_range_in_section(), WriteVecAndScalar::setupTests(), libMesh::RBEIMEvaluation::side_gather_bfs(), DistributedMeshTest::testRemoteElemError(), CheckpointIOTest::testSplitter(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::DistributedMesh::update_parallel_id_counts(), libMesh::GMVIO::write_binary(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::ExodusII_IO_Helper::write_nodal_coordinates(), libMesh::VTKIO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data(), libMesh::System::write_parallel_data(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), and libMesh::XdrIO::write_serialized_nodesets().

104  {
105  processor_id_type returnval =
106  cast_int<processor_id_type>(_communicator.size());
107  libmesh_assert(returnval); // We never have an empty comm
108  return returnval;
109  }
const Parallel::Communicator & _communicator
processor_id_type size() const
uint8_t processor_id_type
libmesh_assert(ctx)

◆ n_qois()

unsigned int libMesh::System::n_qois ( ) const
inlineinherited

Number of currently active quantities of interest.

Definition at line 2516 of file system.h.

References libMesh::System::qoi, and libMesh::System::qoi_error_estimates.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::ImplicitSystem::adjoint_solve(), libMesh::SensitivityData::allocate_data(), libMesh::SensitivityData::allocate_hessian_data(), libMesh::ExplicitSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi(), libMesh::ExplicitSystem::assemble_qoi_derivative(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::DiffContext::DiffContext(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::FileSolutionHistory::FileSolutionHistory(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::UnsteadySolver::init_adjoints(), libMesh::TimeSolver::init_adjoints(), libMesh::System::init_qois(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::TwostepTimeSolver::integrate_qoi_timestep(), libMesh::EulerSolver::integrate_qoi_timestep(), main(), libMesh::FEMContext::pre_fe_reinit(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), libMesh::FileSolutionHistory::retrieve(), libMesh::QoISet::size(), libMesh::UnsteadySolver::UnsteadySolver(), and libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

2517 {
2518 #ifndef LIBMESH_ENABLE_DEPRECATED
2519  libmesh_assert_equal_to(this->qoi.size(), this->qoi_error_estimates.size());
2520 #endif
2521 
2522  return cast_int<unsigned int>(this->qoi.size());
2523 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ n_variable_groups()

unsigned int libMesh::System::n_variable_groups ( ) const
inlineinherited
Returns
The number of VariableGroup variable groups in the system

Definition at line 2357 of file system.h.

References libMesh::System::_variable_groups.

Referenced by libMesh::System::add_variable(), libMesh::System::add_variables(), libMesh::FEMSystem::assembly(), libMesh::System::get_info(), and libMesh::System::init_data().

2358 {
2359  return cast_int<unsigned int>(_variable_groups.size());
2360 }
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145

◆ n_vars()

unsigned int libMesh::System::n_vars ( ) const
inlineinherited
Returns
The number of variables in the system

Definition at line 2349 of file system.h.

References libMesh::System::_variables.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::PetscDMWrapper::add_dofs_helper(), libMesh::DiffContext::add_localized_vector(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::System::add_variable(), libMesh::System::add_variables(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::FEMContext::attach_quadrature_rules(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::PetscDMWrapper::build_section(), libMesh::System::calculate_norm(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::DGFEMContext::DGFEMContext(), libMesh::DiffContext::DiffContext(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::ErrorEstimator::estimate_errors(), libMesh::ExactSolution::ExactSolution(), libMesh::FEMContext::find_hardest_fe_type(), libMesh::EquationSystems::find_variable_numbers(), libMesh::System::get_all_variable_numbers(), libMesh::System::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::FEMSystem::init_context(), libMesh::RBEIMConstruction::init_context(), libMesh::FEMContext::init_internal_data(), libMesh::DifferentiablePhysics::init_physics(), AssemblyA0::interior_assembly(), AssemblyA1::interior_assembly(), AssemblyA2::interior_assembly(), InnerProductAssembly::interior_assembly(), main(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), output_norms(), libMesh::petsc_auto_fieldsplit(), libMesh::FEMContext::pre_fe_reinit(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::System::re_update(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::System::reinit_mesh(), libMesh::HPCoarsenTest::select_refinement(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::SystemSubsetBySubdomain::set_var_nums(), OverlappingTestBase::setup_coupling_matrix(), SystemsTest::testDofCouplingWithVarGroups(), SlitMeshRefinedSystemTest::testRestart(), SlitMeshRefinedSystemTest::testSystem(), libMesh::System::write_header(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::System::write_serialized_vector(), libMesh::System::write_serialized_vectors(), and libMesh::System::zero_variable().

2350 {
2351  return cast_int<unsigned int>(_variables.size());
2352 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ n_vectors()

unsigned int libMesh::System::n_vectors ( ) const
inlineinherited
Returns
The number of vectors (in addition to the solution) handled by this system This is the size of the _vectors map

Definition at line 2477 of file system.h.

References libMesh::System::_vectors.

Referenced by libMesh::ExplicitSystem::add_system_rhs(), libMesh::System::compare(), libMesh::System::get_info(), main(), libMesh::InterMeshProjection::project_system_vectors(), and libMesh::System::write_header().

2478 {
2479  return cast_int<unsigned int>(_vectors.size());
2480 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ name()

const std::string & libMesh::System::name ( ) const
inlineinherited

◆ number()

unsigned int libMesh::System::number ( ) const
inlineinherited
Returns
The system number.

Definition at line 2269 of file system.h.

References libMesh::System::_sys_number.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::PetscDMWrapper::add_dofs_helper(), assemble_matrix_and_rhs(), assemble_shell(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::find_squared_element_error(), libMesh::EquationSystems::find_variable_numbers(), libMesh::System::get_info(), main(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SortAndCopy::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), libMesh::System::read_serialized_blocked_dof_objects(), LinearElasticityWithContact::residual_and_jacobian(), SolidSystem::save_initial_mesh(), libMesh::HPCoarsenTest::select_refinement(), libMesh::PetscDMWrapper::set_point_range_in_section(), MeshInputTest::testCopyElementVectorImpl(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::BoundaryVolumeSolutionTransfer::transfer_volume_boundary(), libMesh::DTKAdapter::update_variable_values(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_blocked_dof_objects(), and libMesh::System::zero_variable().

2270 {
2271  return _sys_number;
2272 }
const unsigned int _sys_number
The number associated with this system.
Definition: system.h:2135

◆ old_solution()

Number libMesh::TransientSystem< RBConstruction >::old_solution ( const dof_id_type  global_dof_number) const
inherited
Returns
The old solution (at the previous timestep) for the specified global DOF.

Definition at line 111 of file transient_system.C.

112 {
113  // Check the sizes
114  libmesh_assert_less (global_dof_number, this->get_dof_map().n_dofs());
115  libmesh_assert_less (global_dof_number, old_local_solution->size());
116 
117  return (*old_local_solution)(global_dof_number);
118 }
virtual numeric_index_type size() const =0
NumericVector< Number > * old_local_solution
All the values I need to compute my contribution to the simulation at hand.
dof_id_type n_dofs() const
Definition: system.C:113
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ older_solution()

Number libMesh::TransientSystem< RBConstruction >::older_solution ( const dof_id_type  global_dof_number) const
inherited
Returns
The older solution (two timesteps ago) for the specified global DOF.

Definition at line 123 of file transient_system.C.

124 {
125  // Check the sizes
126  libmesh_assert_less (global_dof_number, this->get_dof_map().n_dofs());
127  libmesh_assert_less (global_dof_number, older_local_solution->size());
128 
129  return (*older_local_solution)(global_dof_number);
130 }
virtual numeric_index_type size() const =0
dof_id_type n_dofs() const
Definition: system.C:113
NumericVector< Number > * older_local_solution
All the values I need to compute my contribution to the simulation at hand.
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ operator=() [1/2]

TransientRBConstruction& libMesh::TransientRBConstruction::operator= ( const TransientRBConstruction )
delete

◆ operator=() [2/2]

TransientRBConstruction& libMesh::TransientRBConstruction::operator= ( TransientRBConstruction &&  )
delete

◆ point_gradient() [1/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const bool  insist_on_success = true,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The gradient of the solution variable var at the physical point p in the mesh, similarly to point_value.

Definition at line 2498 of file system.C.

References libMesh::Variable::active_subdomains(), TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::PointLocatorBase::enable_out_of_mesh_mode(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), mesh, TIMPI::Communicator::min(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::System::variable().

Referenced by line_print(), and libMesh::System::point_gradient().

2502 {
2503  // This function must be called on every processor; there's no
2504  // telling where in the partition p falls.
2505  parallel_object_only();
2506 
2507  // And every processor had better agree about which point we're
2508  // looking for
2509 #ifndef NDEBUG
2510  libmesh_assert(this->comm().verify(p(0)));
2511 #if LIBMESH_DIM > 1
2512  libmesh_assert(this->comm().verify(p(1)));
2513 #endif
2514 #if LIBMESH_DIM > 2
2515  libmesh_assert(this->comm().verify(p(2)));
2516 #endif
2517 #endif // NDEBUG
2518 
2519  // Get a reference to the mesh object associated with the system object that calls this function
2520  const MeshBase & mesh = this->get_mesh();
2521 
2522  // Use an existing PointLocator or create a new one
2523  std::unique_ptr<PointLocatorBase> locator_ptr = mesh.sub_point_locator();
2524  PointLocatorBase & locator = *locator_ptr;
2525 
2526  if (!insist_on_success || !mesh.is_serial())
2527  locator.enable_out_of_mesh_mode();
2528 
2529  // Get a pointer to an element that contains p and allows us to
2530  // evaluate var
2531  const std::set<subdomain_id_type> & raw_subdomains =
2532  this->variable(var).active_subdomains();
2533  const std::set<subdomain_id_type> * implicit_subdomains =
2534  raw_subdomains.empty() ? nullptr : &raw_subdomains;
2535  const Elem * e = locator(p, implicit_subdomains);
2536 
2537  Gradient grad_u;
2538 
2539  if (e && this->get_dof_map().is_evaluable(*e, var))
2540  grad_u = point_gradient(var, p, *e, sol);
2541 
2542  // If I have an element containing p, then let's let everyone know
2543  processor_id_type lowest_owner =
2544  (e && (e->processor_id() == this->processor_id())) ?
2545  this->processor_id() : this->n_processors();
2546  this->comm().min(lowest_owner);
2547 
2548  // Everybody should get their value from a processor that was able
2549  // to compute it.
2550  // If nobody admits owning the point, we may have a problem.
2551  if (lowest_owner != this->n_processors())
2552  this->comm().broadcast(grad_u, lowest_owner);
2553  else
2554  libmesh_assert(!insist_on_success);
2555 
2556  return grad_u;
2557 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
Gradient point_gradient(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2498
MeshBase & mesh
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
uint8_t processor_id_type
processor_id_type n_processors() const
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
void min(const T &r, T &o, Request &req) const
NumberVectorValue Gradient
libmesh_assert(ctx)
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_gradient() [2/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const Elem e,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The gradient of the solution variable var at the physical point p in local Elem e in the mesh, similarly to point_value.

Definition at line 2560 of file system.C.

References libMesh::FEInterface::compute_data(), libMesh::Elem::contains_point(), libMesh::System::current_local_solution, dim, libMesh::Elem::dim(), libMesh::DofMap::dof_indices(), libMesh::FEComputeData::dshape, libMesh::FEComputeData::enable_derivative(), libMesh::System::get_dof_map(), libMesh::System::get_equation_systems(), libMesh::FEMap::inverse_map(), libMesh::DofMap::is_evaluable(), libMesh::libmesh_assert(), libMesh::FEComputeData::local_transform, and libMesh::DofMap::variable_type().

2564 {
2565  // Ensuring that the given point is really in the element is an
2566  // expensive assert, but as long as debugging is turned on we might
2567  // as well try to catch a particularly nasty potential error
2568  libmesh_assert (e.contains_point(p));
2569 
2570  if (!sol)
2571  sol = this->current_local_solution.get();
2572 
2573  // Get the dof map to get the proper indices for our computation
2574  const DofMap & dof_map = this->get_dof_map();
2575 
2576  // write the element dimension into a separate variable.
2577  const unsigned int dim = e.dim();
2578 
2579  // Make sure we can evaluate on this element.
2580  libmesh_assert (dof_map.is_evaluable(e, var));
2581 
2582  // Need dof_indices for phi[i][j]
2583  std::vector<dof_id_type> dof_indices;
2584 
2585  // Fill in the dof_indices for our element
2586  dof_map.dof_indices (&e, dof_indices, var);
2587 
2588  // Get the no of dofs associated with this point
2589  const unsigned int num_dofs = cast_int<unsigned int>
2590  (dof_indices.size());
2591 
2592  FEType fe_type = dof_map.variable_type(var);
2593 
2594  // Map the physical co-ordinates to the master co-ordinates
2595  Point coor = FEMap::inverse_map(dim, &e, p);
2596 
2597  // get the shape function value via the FEInterface to also handle the case
2598  // of infinite elements correctly, the shape function is not fe->phi().
2599  FEComputeData fe_data(this->get_equation_systems(), coor);
2600  fe_data.enable_derivative();
2601  FEInterface::compute_data(dim, fe_type, &e, fe_data);
2602 
2603  // Get ready to accumulate a gradient
2604  Gradient grad_u;
2605 
2606  for (unsigned int l=0; l<num_dofs; l++)
2607  {
2608  // Chartesian coordinates have always LIBMESH_DIM entries,
2609  // local coordinates have as many coordinates as the element has.
2610  for (std::size_t v=0; v<dim; v++)
2611  for (std::size_t xyz=0; xyz<LIBMESH_DIM; xyz++)
2612  {
2613  // FIXME: this needs better syntax: It is matrix-vector multiplication.
2614  grad_u(xyz) += fe_data.local_transform[v][xyz]
2615  * fe_data.dshape[l](v)
2616  * (*sol)(dof_indices[l]);
2617  }
2618  }
2619 
2620  return grad_u;
2621 }
unsigned int dim
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true, const bool extra_checks=true)
Definition: fe_map.C:1626
const EquationSystems & get_equation_systems() const
Definition: system.h:730
static void compute_data(const unsigned int dim, const FEType &fe_t, const Elem *elem, FEComputeData &data)
Lets the appropriate child of FEBase compute the requested data for the input specified in data...
NumberVectorValue Gradient
libmesh_assert(ctx)
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_gradient() [3/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const Elem e 
) const
inherited

Calls the version of point_gradient() which takes a reference.

This function exists only to prevent people from calling the version of point_gradient() that has a boolean third argument, which would result in unnecessary PointLocator calls.

Definition at line 2625 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::point_gradient().

2626 {
2627  libmesh_assert(e);
2628  return this->point_gradient(var, p, *e);
2629 }
Gradient point_gradient(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2498
libmesh_assert(ctx)

◆ point_gradient() [4/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const NumericVector< Number > *  sol 
) const
inherited

Calls the parallel version of point_gradient().

This function exists only to prevent people from accidentally calling the version of point_gradient() that has a boolean third argument, which would result in incorrect output.

Definition at line 2633 of file system.C.

References libMesh::System::point_gradient().

2634 {
2635  return this->point_gradient(var, p, true, sol);
2636 }
Gradient point_gradient(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2498

◆ point_hessian() [1/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const bool  insist_on_success = true,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The second derivative tensor of the solution variable var at the physical point p in the mesh, similarly to point_value.

Definition at line 2642 of file system.C.

References libMesh::Variable::active_subdomains(), TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::PointLocatorBase::enable_out_of_mesh_mode(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), mesh, TIMPI::Communicator::min(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::System::variable().

Referenced by libMesh::System::point_hessian().

2646 {
2647  // This function must be called on every processor; there's no
2648  // telling where in the partition p falls.
2649  parallel_object_only();
2650 
2651  // And every processor had better agree about which point we're
2652  // looking for
2653 #ifndef NDEBUG
2654  libmesh_assert(this->comm().verify(p(0)));
2655 #if LIBMESH_DIM > 1
2656  libmesh_assert(this->comm().verify(p(1)));
2657 #endif
2658 #if LIBMESH_DIM > 2
2659  libmesh_assert(this->comm().verify(p(2)));
2660 #endif
2661 #endif // NDEBUG
2662 
2663  // Get a reference to the mesh object associated with the system object that calls this function
2664  const MeshBase & mesh = this->get_mesh();
2665 
2666  // Use an existing PointLocator or create a new one
2667  std::unique_ptr<PointLocatorBase> locator_ptr = mesh.sub_point_locator();
2668  PointLocatorBase & locator = *locator_ptr;
2669 
2670  if (!insist_on_success || !mesh.is_serial())
2671  locator.enable_out_of_mesh_mode();
2672 
2673  // Get a pointer to an element that contains p and allows us to
2674  // evaluate var
2675  const std::set<subdomain_id_type> & raw_subdomains =
2676  this->variable(var).active_subdomains();
2677  const std::set<subdomain_id_type> * implicit_subdomains =
2678  raw_subdomains.empty() ? nullptr : &raw_subdomains;
2679  const Elem * e = locator(p, implicit_subdomains);
2680 
2681  Tensor hess_u;
2682 
2683  if (e && this->get_dof_map().is_evaluable(*e, var))
2684  hess_u = point_hessian(var, p, *e, sol);
2685 
2686  // If I have an element containing p, then let's let everyone know
2687  processor_id_type lowest_owner =
2688  (e && (e->processor_id() == this->processor_id())) ?
2689  this->processor_id() : this->n_processors();
2690  this->comm().min(lowest_owner);
2691 
2692  // Everybody should get their value from a processor that was able
2693  // to compute it.
2694  // If nobody admits owning the point, we may have a problem.
2695  if (lowest_owner != this->n_processors())
2696  this->comm().broadcast(hess_u, lowest_owner);
2697  else
2698  libmesh_assert(!insist_on_success);
2699 
2700  return hess_u;
2701 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
MeshBase & mesh
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
uint8_t processor_id_type
processor_id_type n_processors() const
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
void min(const T &r, T &o, Request &req) const
libmesh_assert(ctx)
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
NumberTensorValue Tensor
Tensor point_hessian(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2642
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_hessian() [2/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const Elem e,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The second derivative tensor of the solution variable var at the physical point p in local Elem e in the mesh, similarly to point_value.

Definition at line 2703 of file system.C.

References libMesh::TypeTensor< T >::add_scaled(), libMesh::FEGenericBase< OutputType >::build(), libMesh::Elem::contains_point(), libMesh::System::current_local_solution, libMesh::Elem::dim(), libMesh::DofMap::dof_indices(), libMesh::System::get_dof_map(), libMesh::Elem::infinite(), libMesh::FEMap::inverse_map(), libMesh::DofMap::is_evaluable(), libMesh::libmesh_assert(), and libMesh::DofMap::variable_type().

2707 {
2708  // Ensuring that the given point is really in the element is an
2709  // expensive assert, but as long as debugging is turned on we might
2710  // as well try to catch a particularly nasty potential error
2711  libmesh_assert (e.contains_point(p));
2712 
2713  if (!sol)
2714  sol = this->current_local_solution.get();
2715 
2716  if (e.infinite())
2717  libmesh_not_implemented();
2718 
2719  // Get the dof map to get the proper indices for our computation
2720  const DofMap & dof_map = this->get_dof_map();
2721 
2722  // Make sure we can evaluate on this element.
2723  libmesh_assert (dof_map.is_evaluable(e, var));
2724 
2725  // Need dof_indices for phi[i][j]
2726  std::vector<dof_id_type> dof_indices;
2727 
2728  // Fill in the dof_indices for our element
2729  dof_map.dof_indices (&e, dof_indices, var);
2730 
2731  // Get the no of dofs associated with this point
2732  const unsigned int num_dofs = cast_int<unsigned int>
2733  (dof_indices.size());
2734 
2735  FEType fe_type = dof_map.variable_type(var);
2736 
2737  // Build a FE again so we can calculate u(p)
2738  std::unique_ptr<FEBase> fe (FEBase::build(e.dim(), fe_type));
2739 
2740  // Map the physical co-ordinates to the master co-ordinates
2741  // Build a vector of point co-ordinates to send to reinit
2742  std::vector<Point> coor(1, FEMap::inverse_map(e.dim(), &e, p));
2743 
2744  // Get the values of the shape function derivatives
2745  const std::vector<std::vector<RealTensor>> & d2phi = fe->get_d2phi();
2746 
2747  // Reinitialize the element and compute the shape function values at coor
2748  fe->reinit (&e, &coor);
2749 
2750  // Get ready to accumulate a hessian
2751  Tensor hess_u;
2752 
2753  for (unsigned int l=0; l<num_dofs; l++)
2754  {
2755  hess_u.add_scaled (d2phi[l][0], (*sol)(dof_indices[l]));
2756  }
2757 
2758  return hess_u;
2759 }
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true, const bool extra_checks=true)
Definition: fe_map.C:1626
static std::unique_ptr< FEGenericBase > build(const unsigned int dim, const FEType &type)
Builds a specific finite element type.
libmesh_assert(ctx)
void add_scaled(const TypeTensor< T2 > &, const T &)
Add a scaled tensor to this tensor without creating a temporary.
Definition: type_tensor.h:851
NumberTensorValue Tensor
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_hessian() [3/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const Elem e 
) const
inherited

Calls the version of point_hessian() which takes a reference.

This function exists only to prevent people from calling the version of point_hessian() that has a boolean third argument, which would result in unnecessary PointLocator calls.

Definition at line 2763 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::point_hessian().

2764 {
2765  libmesh_assert(e);
2766  return this->point_hessian(var, p, *e);
2767 }
libmesh_assert(ctx)
Tensor point_hessian(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2642

◆ point_hessian() [4/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const NumericVector< Number > *  sol 
) const
inherited

Calls the parallel version of point_hessian().

This function exists only to prevent people from accidentally calling the version of point_hessian() that has a boolean third argument, which would result in incorrect output.

Definition at line 2771 of file system.C.

References libMesh::System::point_hessian().

2772 {
2773  return this->point_hessian(var, p, true, sol);
2774 }
Tensor point_hessian(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2642

◆ point_value() [1/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const bool  insist_on_success = true,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The value of the solution variable var at the physical point p in the mesh, without knowing a priori which element contains p, using the degree of freedom coefficients in sol (or in current_local_solution if sol is left null).
Note
This function uses MeshBase::sub_point_locator(); users may or may not want to call MeshBase::clear_point_locator() afterward. Also, point_locator() is expensive (N log N for initial construction, log N for evaluations). Avoid using this function in any context where you are already looping over elements.

Because the element containing p may lie on any processor, this function is parallel-only.

By default this method expects the point to reside inside the domain and will abort if no element can be found which contains p. The optional parameter insist_on_success can be set to false to allow the method to return 0 when the point is not located.

Definition at line 2369 of file system.C.

References libMesh::Variable::active_subdomains(), TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::PointLocatorBase::enable_out_of_mesh_mode(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), mesh, TIMPI::Communicator::min(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::System::variable().

Referenced by line_print(), main(), libMesh::System::point_value(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyElementVectorImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), PeriodicBCTest::testPeriodicBC(), SystemsTest::testProjectCubeWithMeshFunction(), and EquationSystemsTest::testRepartitionThenReinit().

2373 {
2374  // This function must be called on every processor; there's no
2375  // telling where in the partition p falls.
2376  parallel_object_only();
2377 
2378  // And every processor had better agree about which point we're
2379  // looking for
2380 #ifndef NDEBUG
2381  libmesh_assert(this->comm().verify(p(0)));
2382 #if LIBMESH_DIM > 1
2383  libmesh_assert(this->comm().verify(p(1)));
2384 #endif
2385 #if LIBMESH_DIM > 2
2386  libmesh_assert(this->comm().verify(p(2)));
2387 #endif
2388 #endif // NDEBUG
2389 
2390  // Get a reference to the mesh object associated with the system object that calls this function
2391  const MeshBase & mesh = this->get_mesh();
2392 
2393  // Use an existing PointLocator or create a new one
2394  std::unique_ptr<PointLocatorBase> locator_ptr = mesh.sub_point_locator();
2395  PointLocatorBase & locator = *locator_ptr;
2396 
2397  if (!insist_on_success || !mesh.is_serial())
2398  locator.enable_out_of_mesh_mode();
2399 
2400  // Get a pointer to an element that contains p and allows us to
2401  // evaluate var
2402  const std::set<subdomain_id_type> & raw_subdomains =
2403  this->variable(var).active_subdomains();
2404  const std::set<subdomain_id_type> * implicit_subdomains =
2405  raw_subdomains.empty() ? nullptr : &raw_subdomains;
2406  const Elem * e = locator(p, implicit_subdomains);
2407 
2408  Number u = 0;
2409 
2410  if (e && this->get_dof_map().is_evaluable(*e, var))
2411  u = point_value(var, p, *e, sol);
2412 
2413  // If I have an element containing p, then let's let everyone know
2414  processor_id_type lowest_owner =
2415  (e && (e->processor_id() == this->processor_id())) ?
2416  this->processor_id() : this->n_processors();
2417  this->comm().min(lowest_owner);
2418 
2419  // Everybody should get their value from a processor that was able
2420  // to compute it.
2421  // If nobody admits owning the point, we have a problem.
2422  if (lowest_owner != this->n_processors())
2423  this->comm().broadcast(u, lowest_owner);
2424  else
2425  libmesh_assert(!insist_on_success);
2426 
2427  return u;
2428 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
MeshBase & mesh
Number point_value(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2369
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
uint8_t processor_id_type
processor_id_type n_processors() const
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
void min(const T &r, T &o, Request &req) const
libmesh_assert(ctx)
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_value() [2/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const Elem e,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The value of the solution variable var at the physical point p contained in local Elem e, using the degree of freedom coefficients in sol (or in current_local_solution if sol is left null).

This version of point_value can be run in serial, but assumes e is in the local mesh partition or is algebraically ghosted.

Definition at line 2430 of file system.C.

References libMesh::FEInterface::compute_data(), libMesh::Elem::contains_point(), libMesh::System::current_local_solution, libMesh::Elem::dim(), libMesh::DofMap::dof_indices(), libMesh::System::get_dof_map(), libMesh::System::get_equation_systems(), libMesh::FEMap::inverse_map(), libMesh::DofMap::is_evaluable(), libMesh::libmesh_assert(), and libMesh::DofMap::variable_type().

2434 {
2435  // Ensuring that the given point is really in the element is an
2436  // expensive assert, but as long as debugging is turned on we might
2437  // as well try to catch a particularly nasty potential error
2438  libmesh_assert (e.contains_point(p));
2439 
2440  if (!sol)
2441  sol = this->current_local_solution.get();
2442 
2443  // Get the dof map to get the proper indices for our computation
2444  const DofMap & dof_map = this->get_dof_map();
2445 
2446  // Make sure we can evaluate on this element.
2447  libmesh_assert (dof_map.is_evaluable(e, var));
2448 
2449  // Need dof_indices for phi[i][j]
2450  std::vector<dof_id_type> dof_indices;
2451 
2452  // Fill in the dof_indices for our element
2453  dof_map.dof_indices (&e, dof_indices, var);
2454 
2455  // Get the no of dofs associated with this point
2456  const unsigned int num_dofs = cast_int<unsigned int>
2457  (dof_indices.size());
2458 
2459  FEType fe_type = dof_map.variable_type(var);
2460 
2461  // Map the physical co-ordinates to the master co-ordinates
2462  Point coor = FEMap::inverse_map(e.dim(), &e, p);
2463 
2464  // get the shape function value via the FEInterface to also handle the case
2465  // of infinite elements correctly, the shape function is not fe->phi().
2466  FEComputeData fe_data(this->get_equation_systems(), coor);
2467  FEInterface::compute_data(e.dim(), fe_type, &e, fe_data);
2468 
2469  // Get ready to accumulate a value
2470  Number u = 0;
2471 
2472  for (unsigned int l=0; l<num_dofs; l++)
2473  {
2474  u += fe_data.shape[l] * (*sol)(dof_indices[l]);
2475  }
2476 
2477  return u;
2478 }
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true, const bool extra_checks=true)
Definition: fe_map.C:1626
const EquationSystems & get_equation_systems() const
Definition: system.h:730
static void compute_data(const unsigned int dim, const FEType &fe_t, const Elem *elem, FEComputeData &data)
Lets the appropriate child of FEBase compute the requested data for the input specified in data...
libmesh_assert(ctx)
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_value() [3/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const Elem e 
) const
inherited

Calls the version of point_value() which takes a reference.

This function exists only to prevent people from calling the version of point_value() that has a boolean third argument, which would result in unnecessary PointLocator calls.

Definition at line 2482 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::point_value().

2483 {
2484  libmesh_assert(e);
2485  return this->point_value(var, p, *e);
2486 }
Number point_value(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2369
libmesh_assert(ctx)

◆ point_value() [4/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const NumericVector< Number > *  sol 
) const
inherited

Calls the parallel version of point_value().

This function exists only to prevent people from accidentally calling the version of point_value() that has a boolean third argument, which would result in incorrect output.

Definition at line 2490 of file system.C.

References libMesh::System::point_value().

2491 {
2492  return this->point_value(var, p, true, sol);
2493 }
Number point_value(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2369

◆ post_process_elem_matrix_and_vector()

virtual void libMesh::RBConstruction::post_process_elem_matrix_and_vector ( DGFEMContext )
inlineprotectedvirtualinherited

This function is called from add_scaled_matrix_and_vector() before each element matrix and vector are assembled into their global counterparts.

By default it is a no-op, but it could be used to apply any user-defined transformations immediately prior to assembly. We use DGFEMContext since it allows for both DG and continuous Galerkin formulations.

Definition at line 708 of file rb_construction.h.

Referenced by libMesh::RBConstruction::add_scaled_matrix_and_vector().

708 {}

◆ post_process_truth_solution()

virtual void libMesh::RBConstruction::post_process_truth_solution ( )
inlineprotectedvirtualinherited

Similarly, provide an opportunity to post-process the truth solution after the solve is complete.

By default this is a no-op, but it could be used to apply any required user-defined post processing to the solution vector. Note: the truth solution is stored in the "solution" member of this class, which is inherited from the parent System class several levels up.

Definition at line 718 of file rb_construction.h.

Referenced by libMesh::RBConstruction::enrich_basis_from_rhs_terms(), and libMesh::RBConstruction::truth_solve().

718 {}

◆ preevaluate_thetas()

void libMesh::RBConstruction::preevaluate_thetas ( )
protectedinherited

Definition at line 2714 of file rb_construction.C.

References libMesh::RBConstruction::_evaluated_thetas, libMesh::RBConstruction::_preevaluate_thetas_completed, libMesh::RBConstructionBase< LinearImplicitSystem >::get_first_local_training_index(), libMesh::RBConstructionBase< LinearImplicitSystem >::get_local_n_training_samples(), libMesh::RBThetaExpansion::get_n_A_terms(), libMesh::RBParametrized::get_parameters(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBEvaluation::get_rb_theta_expansion(), libMesh::index_range(), libMesh::make_range(), and libMesh::RBConstructionBase< LinearImplicitSystem >::set_params_from_training_set().

Referenced by libMesh::RBConstruction::train_reduced_basis_with_greedy().

2715 {
2716  LOG_SCOPE("preevaluate_thetas()", "RBConstruction");
2717 
2719 
2720  // Early return if we've already preevaluated thetas.
2722  return;
2723 
2724  if ( get_local_n_training_samples() == 0 )
2725  return;
2726 
2727  auto & rb_theta_expansion = get_rb_evaluation().get_rb_theta_expansion();
2728  const unsigned int n_A_terms = rb_theta_expansion.get_n_A_terms();
2729  const unsigned int n_F_terms = rb_theta_expansion.get_n_F_terms();
2730  const unsigned int n_outputs = rb_theta_expansion.get_total_n_output_terms();
2731 
2732  // Collect all training parameters
2733  // TODO: Here instead of using a vector of RBParameters objects,
2734  // we could use a single RBParameters object with multiple samples.
2735  // This would save memory over the current approach, but that may
2736  // not be a big deal in practice unless the number of training samples
2737  // is very large for some reason.
2738  std::vector<RBParameters> mus(get_local_n_training_samples());
2739  const numeric_index_type first_index = get_first_local_training_index();
2740  for (unsigned int i=0; i<get_local_n_training_samples(); i++)
2741  {
2742  // Load training parameter i, this is only loaded
2743  // locally since the RB solves are local.
2744  set_params_from_training_set( first_index+i );
2745  mus[i] = get_parameters();
2746  _evaluated_thetas[i].resize(n_A_terms + n_F_terms + n_outputs);
2747  }
2748 
2749  // Evaluate thetas for all training parameters simultaneously
2750  for (unsigned int q_a=0; q_a<n_A_terms; q_a++)
2751  {
2752  const auto A_vals = rb_theta_expansion.eval_A_theta(q_a, mus);
2753  for (auto i : make_range(get_local_n_training_samples()))
2754  _evaluated_thetas[i][q_a] = A_vals[i];
2755  }
2756 
2757  for (unsigned int q_f=0; q_f<n_F_terms; q_f++)
2758  {
2759  const auto F_vals = rb_theta_expansion.eval_F_theta(q_f, mus);
2760  for (auto i : make_range(get_local_n_training_samples()))
2761  _evaluated_thetas[i][n_A_terms + q_f] = F_vals[i];
2762  }
2763 
2764  {
2765  unsigned int output_counter = 0;
2766  for (unsigned int n=0; n<rb_theta_expansion.get_n_outputs(); n++)
2767  for (unsigned int q_l=0; q_l<rb_theta_expansion.get_n_output_terms(n); q_l++)
2768  {
2769  // Evaluate the current output functional term for all
2770  // training parameters simultaneously.
2771  const auto output_vals = rb_theta_expansion.eval_output_theta(n, q_l, mus);
2772 
2773  // TODO: the size of _evaluated_thetas is currently assumed to be
2774  // the same as get_local_n_training_samples(), but this won't be
2775  // the case if we use RBParameters objects that have multiple samples.
2776  // So just make sure that's the case for now.
2777  libmesh_error_msg_if(output_vals.size() != get_local_n_training_samples(),
2778  "We currently only support single-sample RBParameters "
2779  "objects during the training stage.");
2780 
2781  for (auto i : index_range(output_vals))
2782  _evaluated_thetas[i][n_A_terms + n_F_terms + output_counter] = output_vals[i];
2783 
2784  // Go to next output term
2785  output_counter++;
2786  }
2787  }
2788 
2790 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
std::vector< std::vector< Number > > _evaluated_thetas
Storage of evaluated theta functions at a set of parameters.
unsigned int get_n_A_terms() const
Get Q_a, the number of terms in the affine expansion for the bilinear form.
dof_id_type numeric_index_type
Definition: id_types.h:99
numeric_index_type get_local_n_training_samples() const
Get the total number of training samples local to this processor.
const RBParameters & get_parameters() const
Get the current parameters.
void set_params_from_training_set(unsigned int global_index)
Set parameters to the RBParameters stored in index global_index of the global training set...
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:111
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the rb_theta_expansion.
Definition: rb_evaluation.C:85
bool _preevaluate_thetas_completed
Flag to indicate if the preevaluate_thetas function has been called, since this allows us to avoid ca...

◆ print_basis_function_orthogonality()

void libMesh::RBConstruction::print_basis_function_orthogonality ( ) const
inherited

Print out a matrix that shows the orthogonality of the RB basis functions.

This is a helpful debugging tool, e.g. orthogonality can be degraded due to finite precision arithmetic.

Definition at line 374 of file rb_construction.C.

References libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::out, libMesh::System::solution, value, and libMesh::SparseMatrix< T >::vector_mult().

Referenced by main().

375 {
376  std::unique_ptr<NumericVector<Number>> temp = solution->clone();
377 
378  for (unsigned int i=0; i<get_rb_evaluation().get_n_basis_functions(); i++)
379  {
380  for (unsigned int j=0; j<get_rb_evaluation().get_n_basis_functions(); j++)
381  {
383  Number value = temp->dot( get_rb_evaluation().get_basis_function(i) );
384 
385  libMesh::out << value << " ";
386  }
387  libMesh::out << std::endl;
388  }
389  libMesh::out << std::endl;
390 }
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
OStreamProxy out
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
static const bool value
Definition: xdr_io.C:54
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ print_discrete_parameter_values()

void libMesh::RBParametrized::print_discrete_parameter_values ( ) const
inherited

Print out all the discrete parameter values.

Definition at line 377 of file rb_parametrized.C.

References libMesh::RBParametrized::get_discrete_parameter_values(), libMesh::Quality::name(), libMesh::out, and value.

Referenced by libMesh::RBSCMConstruction::print_info(), libMesh::RBEIMConstruction::print_info(), and libMesh::RBConstruction::print_info().

378 {
379  for (const auto & [name, values] : get_discrete_parameter_values())
380  {
381  libMesh::out << "Discrete parameter " << name << ", values: ";
382 
383  for (const auto & value : values)
384  libMesh::out << value << " ";
385  libMesh::out << std::endl;
386  }
387 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values() const
Get a const reference to the discrete parameter values.
OStreamProxy out
static const bool value
Definition: xdr_io.C:54

◆ print_info() [1/3]

void libMesh::ReferenceCounter::print_info ( std::ostream &  out_stream = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 81 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

Referenced by libMesh::LibMeshInit::~LibMeshInit().

82 {
84  out_stream << ReferenceCounter::get_info();
85 }
static std::string get_info()
Gets a string containing the reference information.
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ print_info() [2/3]

void libMesh::ReferenceCounter::print_info ( std::ostream &  out_stream = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 81 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

Referenced by libMesh::LibMeshInit::~LibMeshInit().

82 {
84  out_stream << ReferenceCounter::get_info();
85 }
static std::string get_info()
Gets a string containing the reference information.
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ print_info() [3/3]

void TransientRBConstruction::print_info ( ) const
overridevirtual

Print out info that describes the current setup of this RBConstruction.

Reimplemented from libMesh::RBConstruction.

Definition at line 143 of file transient_rb_construction.C.

References libMesh::RBConstruction::get_delta_N(), libMesh::RBTemporalDiscretization::get_delta_t(), libMesh::RBTemporalDiscretization::get_euler_theta(), libMesh::RBTemporalDiscretization::get_n_time_steps(), get_POD_tol(), libMesh::RBConstruction::get_rb_theta_expansion(), init_filename, libMesh::RBConstruction::is_rb_eval_initialized(), max_truth_solves, nonzero_initialization, libMesh::out, and libMesh::RBConstruction::print_info().

144 {
146 
147  libMesh::out << std::endl << "TransientRBConstruction parameters:" << std::endl;
148 
150  {
151  // Print out info that describes the current setup
152  auto & trans_theta_expansion =
153  cast_ref<const TransientRBThetaExpansion &>(get_rb_theta_expansion());
154  libMesh::out << "Q_m: " << trans_theta_expansion.get_n_M_terms() << std::endl;
155  }
156  else
157  {
158  libMesh::out << "RBThetaExpansion member is not set yet" << std::endl;
159  }
160  libMesh::out << "Number of time-steps: " << get_n_time_steps() << std::endl;
161  libMesh::out << "dt: " << get_delta_t() << std::endl;
162  libMesh::out << "euler_theta (time discretization parameter): " << get_euler_theta() << std::endl;
163  if (get_POD_tol() > 0.)
164  libMesh::out << "POD_tol: " << get_POD_tol() << std::endl;
165  if (max_truth_solves > 0)
166  libMesh::out << "Maximum number of truth solves: " << max_truth_solves << std::endl;
167  libMesh::out << "delta_N (number of basis functions to add each POD-Greedy step): " << get_delta_N() << std::endl;
169  {
170  libMesh::out << "Reading initial condition from " << init_filename << std::endl;
171  }
172  else
173  {
174  libMesh::out << "Using zero initial condition" << std::endl;
175  }
176  libMesh::out << std::endl;
177 }
int max_truth_solves
Maximum number of truth solves in the POD-Greedy.
Real get_POD_tol() const
Get/set POD_tol.
std::string init_filename
The filename of the file containing the initial condition projected onto the truth mesh...
Real get_delta_t() const
Get/set delta_t, the time-step size.
virtual void print_info() const
Print out info that describes the current setup of this RBConstruction.
Real get_euler_theta() const
Get/set euler_theta, parameter that determines the temporal discretization.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
bool nonzero_initialization
Boolean flag to indicate whether we are using a non-zero initialization.
unsigned int get_delta_N() const
Get delta_N, the number of basis functions we add to the RB space per iteration of the greedy algorit...
bool is_rb_eval_initialized() const
OStreamProxy out
unsigned int get_n_time_steps() const
Get/set the total number of time-steps.

◆ print_parameters()

void libMesh::RBParametrized::print_parameters ( ) const
inherited

Print the current parameters.

Definition at line 190 of file rb_parametrized.C.

References libMesh::RBParametrized::get_parameters(), libMesh::RBParametrized::parameters_initialized, and libMesh::RBParameters::print().

Referenced by libMesh::RBEIMConstruction::train_eim_approximation_with_greedy(), and libMesh::RBConstruction::train_reduced_basis_with_greedy().

191 {
192  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::print_current_parameters");
193 
194  get_parameters().print();
195 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
void print() const
Print the parameters.
const RBParameters & get_parameters() const
Get the current parameters.

◆ process_parameters_file()

void TransientRBConstruction::process_parameters_file ( const std::string &  parameters_filename)
overridevirtual

Read in the parameters from file and set up the system accordingly.

Reimplemented from libMesh::RBConstruction.

Definition at line 116 of file transient_rb_construction.C.

References libMesh::RBConstruction::delta_N, libMesh::RBConstruction::get_rb_evaluation(), init_filename, max_truth_solves, nonzero_initialization, POD_tol, libMesh::RBConstruction::process_parameters_file(), libMesh::RBTemporalDiscretization::process_temporal_parameters_file(), libMesh::RBTemporalDiscretization::pull_temporal_discretization_data(), libMesh::Real, set_delta_N(), set_max_truth_solves(), and set_POD_tol().

117 {
118  Parent::process_parameters_file(parameters_filename);
119 
120  // Read in data from parameters_filename
121  GetPot infile(parameters_filename);
122 
123  // Read in the generic temporal discretization data
124  process_temporal_parameters_file(parameters_filename);
125 
126  // Read in the data specific to Construction
127  nonzero_initialization = infile("nonzero_initialization",nonzero_initialization);
128  init_filename = infile("init_filename",init_filename);
129 
130  const Real POD_tol_in = infile("POD_tol", POD_tol);
131  const int max_truth_solves_in = infile("max_truth_solves", max_truth_solves);
132  const unsigned int delta_N_in = infile("delta_N", delta_N);
133 
134  set_POD_tol(POD_tol_in);
135  set_max_truth_solves(max_truth_solves_in);
136  set_delta_N(delta_N_in);
137 
138  // Pass the temporal discretization data to the RBEvaluation
139  TransientRBEvaluation & trans_rb_eval = cast_ref<TransientRBEvaluation &>(get_rb_evaluation());
140  trans_rb_eval.pull_temporal_discretization_data( *this );
141 }
int max_truth_solves
Maximum number of truth solves in the POD-Greedy.
void set_max_truth_solves(int max_truth_solves_in)
void process_temporal_parameters_file(const std::string &parameters_filename)
Read in and initialize parameters from parameters_filename.
Real POD_tol
If positive, this tolerance determines the number of POD modes we add to the space on a call to enric...
std::string init_filename
The filename of the file containing the initial condition projected onto the truth mesh...
bool nonzero_initialization
Boolean flag to indicate whether we are using a non-zero initialization.
unsigned int delta_N
The number of basis functions that we add at each greedy step.
void set_POD_tol(const Real POD_tol_in)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual void process_parameters_file(const std::string &parameters_filename)
Read in from the file specified by parameters_filename and set the this system&#39;s member variables acc...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
void set_delta_N(const unsigned int new_delta_N)
Set delta_N, the number of basis functions we add to the RB space from each POD.

◆ process_temporal_parameters_file()

void libMesh::RBTemporalDiscretization::process_temporal_parameters_file ( const std::string &  parameters_filename)
inherited

Read in and initialize parameters from parameters_filename.

Definition at line 93 of file rb_temporal_discretization.C.

References libMesh::RBTemporalDiscretization::get_delta_t(), libMesh::RBTemporalDiscretization::get_euler_theta(), libMesh::RBTemporalDiscretization::get_n_time_steps(), libMesh::Real, libMesh::RBTemporalDiscretization::set_delta_t(), libMesh::RBTemporalDiscretization::set_euler_theta(), libMesh::RBTemporalDiscretization::set_n_time_steps(), and libMesh::RBTemporalDiscretization::set_time_step().

Referenced by process_parameters_file().

94 {
95  // Read in data from parameters_filename
96  GetPot infile(parameters_filename);
97 
98  // Read in parameters related to temporal discretization
99  unsigned int n_time_steps_in = infile("n_time_steps", get_n_time_steps());
100  const Real delta_t_in = infile("delta_t", get_delta_t());
101  const Real euler_theta_in = infile("euler_theta", get_euler_theta());
102 
103  // and set the relevant member variables
104  set_n_time_steps(n_time_steps_in);
105  set_delta_t(delta_t_in);
106  set_euler_theta(euler_theta_in);
107  set_time_step(0);
108 }
Real get_delta_t() const
Get/set delta_t, the time-step size.
Real get_euler_theta() const
Get/set euler_theta, parameter that determines the temporal discretization.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void set_euler_theta(const Real euler_theta_in)
unsigned int get_n_time_steps() const
Get/set the total number of time-steps.
void set_n_time_steps(const unsigned int K)

◆ processor_id()

processor_id_type libMesh::ParallelObject::processor_id ( ) const
inlineinherited
Returns
The rank of this processor in the group.

Definition at line 114 of file parallel_object.h.

References libMesh::ParallelObject::_communicator, and TIMPI::Communicator::rank().

Referenced by libMesh::BoundaryInfo::_find_id_maps(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DistributedMesh::add_elem(), libMesh::BoundaryInfo::add_elements(), libMesh::DofMap::add_neighbors_to_send_list(), libMesh::DistributedMesh::add_node(), libMesh::MeshTools::Modification::all_tri(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::FEMSystem::assembly(), libMesh::Nemesis_IO::assert_symmetric_cmaps(), libMesh::Partitioner::assign_partitioning(), libMesh::Nemesis_IO_Helper::build_element_and_node_maps(), libMesh::Partitioner::build_graph(), libMesh::InfElemBuilder::build_inf_elem(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::DistributedMesh::clear(), libMesh::DistributedMesh::clear_elems(), libMesh::ExodusII_IO_Helper::close(), libMesh::Nemesis_IO_Helper::compute_border_node_ids(), libMesh::Nemesis_IO_Helper::compute_communication_map_parameters(), libMesh::Nemesis_IO_Helper::compute_internal_and_border_elems_and_internal_nodes(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::Nemesis_IO_Helper::compute_node_communication_maps(), libMesh::Nemesis_IO_Helper::compute_num_global_elem_blocks(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::Nemesis_IO_Helper::construct_nemesis_filename(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::ExodusII_IO_Helper::create(), libMesh::DistributedMesh::delete_elem(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::DofMap::distribute_dofs(), libMesh::DofMap::distribute_local_dofs_node_major(), libMesh::DofMap::distribute_local_dofs_var_major(), libMesh::DofMap::distribute_scalar_dofs(), libMesh::DistributedMesh::DistributedMesh(), libMesh::DofMap::end_dof(), libMesh::DofMap::end_old_dof(), libMesh::EnsightIO::EnsightIO(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::MeshFunction::find_element(), libMesh::MeshFunction::find_elements(), libMesh::UnstructuredMesh::find_neighbors(), libMesh::DofMap::first_dof(), libMesh::DofMap::first_old_dof(), libMesh::RBEIMEvaluation::gather_bfs(), libMesh::Nemesis_IO_Helper::get_cmap_params(), libMesh::Nemesis_IO_Helper::get_eb_info_global(), libMesh::Nemesis_IO_Helper::get_elem_cmap(), libMesh::Nemesis_IO_Helper::get_elem_map(), libMesh::MeshBase::get_info(), libMesh::DofMap::get_info(), libMesh::Nemesis_IO_Helper::get_init_global(), libMesh::Nemesis_IO_Helper::get_init_info(), libMesh::Nemesis_IO_Helper::get_loadbal_param(), libMesh::DofMap::get_local_constraints(), libMesh::Nemesis_IO_Helper::get_node_cmap(), libMesh::Nemesis_IO_Helper::get_node_map(), libMesh::Nemesis_IO_Helper::get_ns_param_global(), libMesh::Nemesis_IO_Helper::get_ss_param_global(), libMesh::SparsityPattern::Build::handle_vi_vj(), libMesh::LaplaceMeshSmoother::init(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), HeatSystem::init_data(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::ExodusII_IO_Helper::initialize_element_variables(), libMesh::ExodusII_IO_Helper::initialize_global_variables(), libMesh::ExodusII_IO_Helper::initialize_nodal_variables(), libMesh::DistributedMesh::insert_elem(), libMesh::DofMap::is_evaluable(), libMesh::SparsityPattern::Build::join(), libMesh::TransientRBEvaluation::legacy_write_offline_data_to_files(), libMesh::RBSCMEvaluation::legacy_write_offline_data_to_files(), libMesh::RBEvaluation::legacy_write_offline_data_to_files(), libMesh::MeshTools::libmesh_assert_consistent_distributed(), libMesh::MeshTools::libmesh_assert_consistent_distributed_nodes(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_object_ids(), libMesh::DofMap::local_variable_indices(), main(), libMesh::MeshRefinement::make_coarsening_compatible(), AugmentSparsityOnInterface::mesh_reinit(), libMesh::TriangulatorInterface::MeshedHole::MeshedHole(), libMesh::MeshBase::n_active_local_elem(), libMesh::BoundaryInfo::n_boundary_conds(), libMesh::BoundaryInfo::n_edge_conds(), libMesh::DofMap::n_local_dofs(), libMesh::System::n_local_dofs(), libMesh::MeshBase::n_local_elem(), libMesh::MeshBase::n_local_nodes(), libMesh::BoundaryInfo::n_nodeset_conds(), libMesh::BoundaryInfo::n_shellface_conds(), libMesh::RBEIMEvaluation::node_gather_bfs(), libMesh::SparsityPattern::Build::operator()(), libMesh::DistributedMesh::own_node(), libMesh::BoundaryInfo::parallel_sync_node_ids(), libMesh::BoundaryInfo::parallel_sync_side_ids(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::DofMap::print_dof_constraints(), libMesh::DofMap::process_mesh_constraint_rows(), libMesh::Nemesis_IO_Helper::put_cmap_params(), libMesh::Nemesis_IO_Helper::put_elem_cmap(), libMesh::Nemesis_IO_Helper::put_elem_map(), libMesh::Nemesis_IO_Helper::put_loadbal_param(), libMesh::Nemesis_IO_Helper::put_node_cmap(), libMesh::Nemesis_IO_Helper::put_node_map(), libMesh::NameBasedIO::read(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::CheckpointIO::read(), libMesh::EquationSystems::read(), libMesh::ExodusII_IO_Helper::read_elem_num_map(), libMesh::ExodusII_IO_Helper::read_global_values(), libMesh::ExodusII_IO::read_header(), libMesh::CheckpointIO::read_header(), libMesh::XdrIO::read_header(), libMesh::System::read_header(), libMesh::System::read_legacy_data(), libMesh::DynaIO::read_mesh(), libMesh::ExodusII_IO_Helper::read_node_num_map(), libMesh::System::read_parallel_data(), read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_SCALAR_dofs(), libMesh::XdrIO::read_serialized_bc_names(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::System::read_serialized_data(), libMesh::XdrIO::read_serialized_nodes(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::XdrIO::read_serialized_subdomain_names(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::Nemesis_IO_Helper::read_var_names_impl(), libMesh::DistributedMesh::renumber_dof_objects(), libMesh::DistributedMesh::renumber_nodes_and_elements(), libMesh::DofMap::scatter_constraints(), libMesh::CheckpointIO::select_split_config(), libMesh::DistributedMesh::set_next_unique_id(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::RBEIMEvaluation::side_gather_bfs(), ExodusTest< elem_type >::test_read_gold(), ExodusTest< elem_type >::test_write(), MeshInputTest::testAbaqusRead(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyElementVectorImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), MeshInputTest::testDynaFileMappings(), MeshInputTest::testDynaNoSplines(), MeshInputTest::testDynaReadElem(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusFileMappings(), MeshInputTest::testExodusIGASidesets(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), MeshInputTest::testLowOrderEdgeBlocks(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), BoundaryInfoTest::testShellFaceConstraints(), MeshInputTest::testSingleElementImpl(), WriteVecAndScalar::testSolution(), CheckpointIOTest::testSplitter(), MeshInputTest::testTetgenIO(), libMesh::MeshTools::total_weight(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::DistributedMesh::update_parallel_id_counts(), libMesh::DTKAdapter::update_variable_values(), libMesh::NameBasedIO::write(), libMesh::XdrIO::write(), libMesh::CheckpointIO::write(), libMesh::EquationSystems::write(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::ExodusII_IO::write_element_data(), libMesh::ExodusII_IO_Helper::write_element_values(), libMesh::ExodusII_IO_Helper::write_element_values_element_major(), libMesh::ExodusII_IO_Helper::write_elements(), libMesh::ExodusII_IO_Helper::write_elemset_data(), libMesh::ExodusII_IO_Helper::write_elemsets(), libMesh::ExodusII_IO::write_global_data(), libMesh::ExodusII_IO_Helper::write_global_values(), libMesh::System::write_header(), libMesh::ExodusII_IO::write_information_records(), libMesh::ExodusII_IO_Helper::write_information_records(), libMesh::ExodusII_IO_Helper::write_nodal_coordinates(), libMesh::UCDIO::write_nodal_data(), libMesh::VTKIO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data_common(), libMesh::ExodusII_IO::write_nodal_data_discontinuous(), libMesh::ExodusII_IO_Helper::write_nodal_values(), libMesh::ExodusII_IO_Helper::write_nodeset_data(), libMesh::Nemesis_IO_Helper::write_nodesets(), libMesh::ExodusII_IO_Helper::write_nodesets(), libMesh::RBEIMEvaluation::write_out_interior_basis_functions(), libMesh::RBEIMEvaluation::write_out_node_basis_functions(), libMesh::RBEIMEvaluation::write_out_side_basis_functions(), write_output_solvedata(), libMesh::System::write_parallel_data(), libMesh::RBConstruction::write_riesz_representors_to_files(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bc_names(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::System::write_serialized_data(), libMesh::XdrIO::write_serialized_nodes(), libMesh::XdrIO::write_serialized_nodesets(), libMesh::XdrIO::write_serialized_subdomain_names(), libMesh::System::write_serialized_vector(), libMesh::System::write_serialized_vectors(), libMesh::ExodusII_IO_Helper::write_sideset_data(), libMesh::Nemesis_IO_Helper::write_sidesets(), libMesh::ExodusII_IO_Helper::write_sidesets(), libMesh::ExodusII_IO::write_timestep(), libMesh::ExodusII_IO_Helper::write_timestep(), and libMesh::ExodusII_IO::write_timestep_discontinuous().

115  { return cast_int<processor_id_type>(_communicator.rank()); }
processor_id_type rank() const
const Parallel::Communicator & _communicator

◆ project_solution() [1/3]

void libMesh::System::project_solution ( FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr 
) const
inherited

Projects arbitrary functions onto the current solution.

This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Definition at line 1032 of file system_projection.C.

Referenced by init_sys(), initialize(), main(), SlitMeshRefinedSystemTest::setUp(), FETestBase< order, family, elem_type, 1 >::setUp(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), SystemsTest::testProjectCubeWithMeshFunction(), MeshInputTest::testProjectionRegression(), EquationSystemsTest::testRepartitionThenReinit(), and libMesh::MeshfreeSolutionTransfer::transfer().

1034 {
1035  this->project_vector(*solution, f, g);
1036 
1037  solution->localize(*current_local_solution, _dof_map->get_send_list());
1038 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_solution() [2/3]

void libMesh::System::project_solution ( FEMFunctionBase< Number > *  f,
FEMFunctionBase< Gradient > *  g = nullptr 
) const
inherited

Projects arbitrary functions onto the current solution.

This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Definition at line 1045 of file system_projection.C.

1047 {
1048  this->project_vector(*solution, f, g);
1049 
1050  solution->localize(*current_local_solution, _dof_map->get_send_list());
1051 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_solution() [3/3]

void libMesh::System::project_solution ( ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters 
) const
inherited

This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element.

Definition at line 1018 of file system_projection.C.

References fptr(), and gptr().

1021 {
1022  WrappedFunction<Number> f(*this, fptr, &parameters);
1023  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1024  this->project_solution(&f, &g);
1025 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
void project_solution(FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr) const
Projects arbitrary functions onto the current solution.
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95

◆ project_solution_on_reinit()

bool& libMesh::System::project_solution_on_reinit ( void  )
inlineinherited

Tells the System whether or not to project the solution vector onto new grids when the system is reinitialized.

The solution will be projected unless project_solution_on_reinit() = false is called.

Definition at line 821 of file system.h.

References libMesh::System::_solution_projection.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), and libMesh::MemoryHistoryData::store_vectors().

822  { return _solution_projection; }
bool _solution_projection
Holds true if the solution vector should be projected onto a changed grid, false if it should be zero...
Definition: system.h:2198

◆ project_vector() [1/5]

void libMesh::System::project_vector ( NumericVector< Number > &  new_vector,
FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1073 of file system_projection.C.

References libMesh::libmesh_assert().

Referenced by main(), libMesh::NewmarkSolver::project_initial_accel(), libMesh::SecondOrderUnsteadySolver::project_initial_rate(), libMesh::InterMeshProjection::project_system_vectors(), and libMesh::System::restrict_vectors().

1077 {
1078  LOG_SCOPE ("project_vector(FunctionBase)", "System");
1079 
1080  libmesh_assert(f);
1081 
1082  WrappedFunctor<Number> f_fem(*f);
1083 
1084  if (g)
1085  {
1086  WrappedFunctor<Gradient> g_fem(*g);
1087 
1088  this->project_vector(new_vector, &f_fem, &g_fem, is_adjoint);
1089  }
1090  else
1091  this->project_vector(new_vector, &f_fem, nullptr, is_adjoint);
1092 }
libmesh_assert(ctx)
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_vector() [2/5]

void libMesh::System::project_vector ( NumericVector< Number > &  new_vector,
FEMFunctionBase< Number > *  f,
FEMFunctionBase< Gradient > *  g = nullptr,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1099 of file system_projection.C.

References libMesh::NumericVector< T >::close(), libMesh::FEMFunctionBase< Output >::component(), libMesh::FEType::family, libMesh::Utility::iota(), libMesh::libmesh_assert(), libMesh::libmesh_ignore(), libMesh::make_range(), n_vars, libMesh::NODEELEM, libMesh::FEMContext::pre_fe_reinit(), libMesh::RATIONAL_BERNSTEIN, libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::NumericVector< T >::set(), and libMesh::Variable::type().

1103 {
1104  LOG_SCOPE ("project_fem_vector()", "System");
1105 
1106  libmesh_assert (f);
1107 
1108  ConstElemRange active_local_range
1109  (this->get_mesh().active_local_elements_begin(),
1110  this->get_mesh().active_local_elements_end() );
1111 
1112  VectorSetAction<Number> setter(new_vector);
1113 
1114  const unsigned int n_variables = this->n_vars();
1115 
1116  std::vector<unsigned int> vars(n_variables);
1117  std::iota(vars.begin(), vars.end(), 0);
1118 
1119  // Use a typedef to make the calling sequence for parallel_for() a bit more readable
1120  typedef
1121  GenericProjector<FEMFunctionWrapper<Number>, FEMFunctionWrapper<Gradient>,
1122  Number, VectorSetAction<Number>> FEMProjector;
1123 
1124  FEMFunctionWrapper<Number> fw(*f);
1125 
1126  if (g)
1127  {
1128  FEMFunctionWrapper<Gradient> gw(*g);
1129 
1130  FEMProjector projector(*this, fw, &gw, setter, vars);
1131  projector.project(active_local_range);
1132  }
1133  else
1134  {
1135  FEMProjector projector(*this, fw, nullptr, setter, vars);
1136  projector.project(active_local_range);
1137  }
1138 
1139  // Also, load values into the SCALAR dofs
1140  // Note: We assume that all SCALAR dofs are on the
1141  // processor with highest ID
1142  if (this->processor_id() == (this->n_processors()-1))
1143  {
1144  // FIXME: Do we want to first check for SCALAR vars before building this? [PB]
1145  FEMContext context( *this );
1146 
1147  const DofMap & dof_map = this->get_dof_map();
1148  for (auto var : make_range(this->n_vars()))
1149  if (this->variable(var).type().family == SCALAR)
1150  {
1151  // FIXME: We reinit with an arbitrary element in case the user
1152  // doesn't override FEMFunctionBase::component. Is there
1153  // any use case we're missing? [PB]
1154  context.pre_fe_reinit(*this, *(this->get_mesh().active_local_elements_begin()));
1155 
1156  std::vector<dof_id_type> SCALAR_indices;
1157  dof_map.SCALAR_dof_indices (SCALAR_indices, var);
1158  const unsigned int n_SCALAR_dofs =
1159  cast_int<unsigned int>(SCALAR_indices.size());
1160 
1161  for (unsigned int i=0; i<n_SCALAR_dofs; i++)
1162  {
1163  const dof_id_type global_index = SCALAR_indices[i];
1164  const unsigned int component_index =
1165  this->variable_scalar_number(var,i);
1166 
1167  new_vector.set(global_index, f->component(context, component_index, Point(), this->time));
1168  }
1169  }
1170  }
1171 
1172  new_vector.close();
1173 
1174  // Look for spline bases, in which case we need to backtrack
1175  // to calculate the spline DoF values.
1176  std::vector<const Variable *> rational_vars;
1177  for (auto varnum : vars)
1178  {
1179  const Variable & var = this->get_dof_map().variable(varnum);
1180  if (var.type().family == RATIONAL_BERNSTEIN)
1181  rational_vars.push_back(&var);
1182  }
1183 
1184  // Okay, but are we really using any *spline* bases, or just
1185  // unconstrained rational bases?
1186  bool using_spline_bases = false;
1187  if (!rational_vars.empty())
1188  {
1189  // Look for a spline node: a NodeElem with a rational variable
1190  // on it.
1191  for (auto & elem : active_local_range)
1192  if (elem->type() == NODEELEM)
1193  for (auto rational_var : rational_vars)
1194  if (rational_var->active_on_subdomain(elem->subdomain_id()))
1195  {
1196  using_spline_bases = true;
1197  goto checked_on_splines;
1198  }
1199  }
1200 
1201 checked_on_splines:
1202 
1203  // Not every processor may have a NodeElem, especially while
1204  // we're not partitioning them efficiently yet.
1205  this->comm().max(using_spline_bases);
1206 
1207  if (using_spline_bases)
1208  this->solve_for_unconstrained_dofs(new_vector, is_adjoint);
1209 
1210 #ifdef LIBMESH_ENABLE_CONSTRAINTS
1211  if (is_adjoint == -1)
1212  this->get_dof_map().enforce_constraints_exactly(*this, &new_vector);
1213  else if (is_adjoint >= 0)
1215  is_adjoint);
1216 #else
1217  libmesh_ignore(is_adjoint);
1218 #endif
1219 }
Real time
For time-dependent problems, this is the time t at the beginning of the current timestep.
Definition: system.h:1595
unsigned int variable_scalar_number(std::string_view var, unsigned int component) const
Definition: system.h:2408
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
void iota(ForwardIter first, ForwardIter last, T value)
Utility::iota was created back when std::iota was just an SGI STL extension.
Definition: utility.h:229
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
void enforce_adjoint_constraints_exactly(NumericVector< Number > &v, unsigned int q) const
Heterogeneously constrains the numeric vector v, which represents an adjoint solution defined on the ...
Definition: dof_map.h:2278
processor_id_type n_processors() const
void libmesh_ignore(const Args &...)
const Variable & variable(const unsigned int c) const
Definition: dof_map.h:2114
libmesh_assert(ctx)
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
void max(const T &r, T &o, Request &req) const
virtual Output component(const FEMContext &, unsigned int i, const Point &p, Real time=0.)
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
virtual void set(const numeric_index_type i, const T value)=0
Sets v(i) = value.
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
void solve_for_unconstrained_dofs(NumericVector< Number > &, int is_adjoint=-1) const
uint8_t dof_id_type
Definition: id_types.h:67
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274

◆ project_vector() [3/5]

void libMesh::System::project_vector ( ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters,
NumericVector< Number > &  new_vector,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1058 of file system_projection.C.

References fptr(), and gptr().

1063 {
1064  WrappedFunction<Number> f(*this, fptr, &parameters);
1065  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1066  this->project_vector(new_vector, &f, &g, is_adjoint);
1067 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_vector() [4/5]

void libMesh::System::project_vector ( NumericVector< Number > &  vector,
int  is_adjoint = -1 
) const
protectedinherited

Projects the vector defined on the old mesh onto the new mesh.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 247 of file system_projection.C.

References libMesh::NumericVector< T >::clone().

249 {
250  // Create a copy of the vector, which currently
251  // contains the old data.
252  std::unique_ptr<NumericVector<Number>>
253  old_vector (vector.clone());
254 
255  // Project the old vector to the new vector
256  this->project_vector (*old_vector, vector, is_adjoint);
257 }
virtual std::unique_ptr< NumericVector< T > > clone() const =0
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_vector() [5/5]

void libMesh::System::project_vector ( const NumericVector< Number > &  old_v,
NumericVector< Number > &  new_v,
int  is_adjoint = -1 
) const
protectedinherited

Projects the vector defined on the old mesh onto the new mesh.

This method projects the vector via L2 projections or nodal interpolations on each element.

The original vector is unchanged and the new vector is passed through the second argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

This method projects a solution from an old mesh to a current, refined mesh. The input vector old_v gives the solution on the old mesh, while the new_v gives the solution (to be computed) on the new mesh.

Definition at line 265 of file system_projection.C.

References libMesh::NumericVector< T >::clear(), libMesh::NumericVector< T >::close(), libMesh::NumericVector< T >::get(), libMesh::GHOSTED, libMesh::index_range(), libMesh::NumericVector< T >::init(), libMesh::Utility::iota(), libMesh::libmesh_assert(), libMesh::libmesh_ignore(), libMesh::NumericVector< T >::local_size(), libMesh::NumericVector< T >::localize(), libMesh::make_range(), n_vars, libMesh::PARALLEL, libMesh::Threads::parallel_reduce(), libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::BuildProjectionList::send_list, libMesh::SERIAL, libMesh::NumericVector< T >::set(), libMesh::NumericVector< T >::size(), libMesh::NumericVector< T >::type(), libMesh::TYPE_SCALAR, and libMesh::BuildProjectionList::unique().

268 {
269  LOG_SCOPE ("project_vector(old,new)", "System");
270 
277  new_v.clear();
278 
279 #ifdef LIBMESH_ENABLE_AMR
280 
281  // Resize the new vector and get a serial version.
282  NumericVector<Number> * new_vector_ptr = nullptr;
283  std::unique_ptr<NumericVector<Number>> new_vector_built;
284  NumericVector<Number> * local_old_vector;
285  std::unique_ptr<NumericVector<Number>> local_old_vector_built;
286  const NumericVector<Number> * old_vector_ptr = nullptr;
287 
288  ConstElemRange active_local_elem_range
289  (this->get_mesh().active_local_elements_begin(),
290  this->get_mesh().active_local_elements_end());
291 
292  // If the old vector was uniprocessor, make the new
293  // vector uniprocessor
294  if (old_v.type() == SERIAL)
295  {
296  new_v.init (this->n_dofs(), false, SERIAL);
297  new_vector_ptr = &new_v;
298  old_vector_ptr = &old_v;
299  }
300 
301  // Otherwise it is a parallel, distributed vector, which
302  // we need to localize.
303  else if (old_v.type() == PARALLEL)
304  {
305  // Build a send list for efficient localization
306  BuildProjectionList projection_list(*this);
307  Threads::parallel_reduce (active_local_elem_range,
308  projection_list);
309 
310  // Create a sorted, unique send_list
311  projection_list.unique();
312 
313  new_v.init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
314  new_vector_built = NumericVector<Number>::build(this->comm());
315  local_old_vector_built = NumericVector<Number>::build(this->comm());
316  new_vector_ptr = new_vector_built.get();
317  local_old_vector = local_old_vector_built.get();
318  new_vector_ptr->init(this->n_dofs(), this->n_local_dofs(),
319  this->get_dof_map().get_send_list(), false,
320  GHOSTED);
321  local_old_vector->init(old_v.size(), old_v.local_size(),
322  projection_list.send_list, false, GHOSTED);
323  old_v.localize(*local_old_vector, projection_list.send_list);
324  local_old_vector->close();
325  old_vector_ptr = local_old_vector;
326  }
327  else if (old_v.type() == GHOSTED)
328  {
329  // Build a send list for efficient localization
330  BuildProjectionList projection_list(*this);
331  Threads::parallel_reduce (active_local_elem_range,
332  projection_list);
333 
334  // Create a sorted, unique send_list
335  projection_list.unique();
336 
337  new_v.init (this->n_dofs(), this->n_local_dofs(),
338  this->get_dof_map().get_send_list(), false, GHOSTED);
339 
340  local_old_vector_built = NumericVector<Number>::build(this->comm());
341  new_vector_ptr = &new_v;
342  local_old_vector = local_old_vector_built.get();
343  local_old_vector->init(old_v.size(), old_v.local_size(),
344  projection_list.send_list, false, GHOSTED);
345  old_v.localize(*local_old_vector, projection_list.send_list);
346  local_old_vector->close();
347  old_vector_ptr = local_old_vector;
348  }
349  else // unknown old_v.type()
350  libmesh_error_msg("ERROR: Unknown old_v.type() == " << old_v.type());
351 
352  // Note that the above will have zeroed the new_vector.
353  // Just to be sure, assert that new_vector_ptr and old_vector_ptr
354  // were successfully set before trying to deref them.
355  libmesh_assert(new_vector_ptr);
356  libmesh_assert(old_vector_ptr);
357 
358  NumericVector<Number> & new_vector = *new_vector_ptr;
359  const NumericVector<Number> & old_vector = *old_vector_ptr;
360 
361  const unsigned int n_variables = this->n_vars();
362 
363  if (n_variables)
364  {
365  std::vector<unsigned int> vars(n_variables);
366  std::iota(vars.begin(), vars.end(), 0);
367  std::vector<unsigned int> regular_vars, vector_vars;
368  for (auto var : vars)
369  {
371  regular_vars.push_back(var);
372  else
373  vector_vars.push_back(var);
374  }
375 
376  // Use a typedef to make the calling sequence for parallel_for() a bit more readable
377  typedef
378  GenericProjector<OldSolutionValue<Number, &FEMContext::point_value>,
379  OldSolutionValue<Gradient, &FEMContext::point_gradient>,
380  Number, VectorSetAction<Number>> FEMProjector;
381 
382  OldSolutionValue<Number, &FEMContext::point_value> f(*this, old_vector, &regular_vars);
383  OldSolutionValue<Gradient, &FEMContext::point_gradient> g(*this, old_vector, &regular_vars);
384  VectorSetAction<Number> setter(new_vector);
385 
386  FEMProjector projector(*this, f, &g, setter, regular_vars);
387  projector.project(active_local_elem_range);
388 
389  typedef
390  GenericProjector<OldSolutionValue<Gradient, &FEMContext::point_value>,
391  OldSolutionValue<Tensor, &FEMContext::point_gradient>,
392  Gradient, VectorSetAction<Number>> FEMVectorProjector;
393 
394  OldSolutionValue<Gradient, &FEMContext::point_value> f_vector(*this, old_vector, &vector_vars);
395  OldSolutionValue<Tensor, &FEMContext::point_gradient> g_vector(*this, old_vector, &vector_vars);
396 
397  FEMVectorProjector vector_projector(*this, f_vector, &g_vector, setter, vector_vars);
398  vector_projector.project(active_local_elem_range);
399 
400  // Copy the SCALAR dofs from old_vector to new_vector
401  // Note: We assume that all SCALAR dofs are on the
402  // processor with highest ID
403  if (this->processor_id() == (this->n_processors()-1))
404  {
405  const DofMap & dof_map = this->get_dof_map();
406  for (auto var : make_range(this->n_vars()))
407  if (this->variable(var).type().family == SCALAR)
408  {
409  // We can just map SCALAR dofs directly across
410  std::vector<dof_id_type> new_SCALAR_indices, old_SCALAR_indices;
411  dof_map.SCALAR_dof_indices (new_SCALAR_indices, var, false);
412  dof_map.SCALAR_dof_indices (old_SCALAR_indices, var, true);
413  for (auto i : index_range(new_SCALAR_indices))
414  new_vector.set(new_SCALAR_indices[i], old_vector(old_SCALAR_indices[i]));
415  }
416  }
417  }
418 
419  new_vector.close();
420 
421  // If the old vector was serial, we probably need to send our values
422  // to other processors
423  //
424  // FIXME: I'm not sure how to make a NumericVector do that without
425  // creating a temporary parallel vector to use localize! - RHS
426  if (old_v.type() == SERIAL)
427  {
428  std::unique_ptr<NumericVector<Number>> dist_v = NumericVector<Number>::build(this->comm());
429  dist_v->init(this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
430  dist_v->close();
431 
432  for (auto i : make_range(dist_v->size()))
433  if (new_vector(i) != 0.0)
434  dist_v->set(i, new_vector(i));
435 
436  dist_v->close();
437 
438  dist_v->localize (new_v, this->get_dof_map().get_send_list());
439  new_v.close();
440  }
441  // If the old vector was parallel, we need to update it
442  // and free the localized copies
443  else if (old_v.type() == PARALLEL)
444  {
445  // We may have to set dof values that this processor doesn't
446  // own in certain special cases, like LAGRANGE FIRST or
447  // HERMITE THIRD elements on second-order meshes?
448  new_v = new_vector;
449  new_v.close();
450  }
451 
452 
453  // Apply constraints only if we we are asked to
454  if(this->project_with_constraints)
455  {
456  if (is_adjoint == -1)
457  {
458  this->get_dof_map().enforce_constraints_exactly(*this, &new_v);
459  }
460  else if (is_adjoint >= 0)
461  {
463  is_adjoint);
464  }
465  }
466 #else
467 
468  // AMR is disabled: simply copy the vector
469  new_v = old_v;
470 
471  libmesh_ignore(is_adjoint);
472 
473 #endif // #ifdef LIBMESH_ENABLE_AMR
474 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
virtual void get(const std::vector< numeric_index_type > &index, T *values) const
Access multiple components at once.
virtual numeric_index_type size() const =0
static FEFieldType field_type(const FEType &fe_type)
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
const MeshBase & get_mesh() const
Definition: system.h:2277
virtual void init(const numeric_index_type n, const numeric_index_type n_local, const bool fast=false, const ParallelType ptype=AUTOMATIC)=0
Change the dimension of the vector to n.
void iota(ForwardIter first, ForwardIter last, T value)
Utility::iota was created back when std::iota was just an SGI STL extension.
Definition: utility.h:229
dof_id_type n_dofs() const
Definition: system.C:113
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
void enforce_adjoint_constraints_exactly(NumericVector< Number > &v, unsigned int q) const
Heterogeneously constrains the numeric vector v, which represents an adjoint solution defined on the ...
Definition: dof_map.h:2278
processor_id_type n_processors() const
void libmesh_ignore(const Args &...)
NumberVectorValue Gradient
bool project_with_constraints
Do we want to apply constraints while projecting vectors ?
Definition: system.h:2253
libmesh_assert(ctx)
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
ParallelType type() const
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
virtual numeric_index_type local_size() const =0
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
void parallel_reduce(const Range &range, Body &body)
Execute the provided reduction operation in parallel on the specified range.
Definition: threads_none.h:101
virtual void clear()
Restores the NumericVector<T> to a pristine state.
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
template class LIBMESH_EXPORT NumericVector< Number >
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:111
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274
virtual void localize(std::vector< T > &v_local) const =0
Creates a copy of the global vector in the local vector v_local.

◆ projection_matrix()

void libMesh::System::projection_matrix ( SparseMatrix< Number > &  proj_mat) const
inherited

This method creates a projection matrix which corresponds to the operation of project_vector between old and new solution spaces.

Heterogeneous Dirichlet boundary conditions are not taken into account here; if this matrix is used for prolongation (mesh refinement) on a side with a heterogeneous BC, the newly created degrees of freedom on that side will still match the coarse grid approximation of the BC, not the fine grid approximation.

Definition at line 952 of file system_projection.C.

References libMesh::Utility::iota(), libMesh::make_range(), n_vars, libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), and libMesh::SparseMatrix< T >::set().

Referenced by libMesh::PetscDMWrapper::init_and_attach_petscdm(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), and SystemsTest::testProjectMatrix3D().

953 {
954  LOG_SCOPE ("projection_matrix()", "System");
955 
956  const unsigned int n_variables = this->n_vars();
957 
958  if (n_variables)
959  {
960  ConstElemRange active_local_elem_range
961  (this->get_mesh().active_local_elements_begin(),
962  this->get_mesh().active_local_elements_end());
963 
964  std::vector<unsigned int> vars(n_variables);
965  std::iota(vars.begin(), vars.end(), 0);
966 
967  // Use a typedef to make the calling sequence for parallel_for() a bit more readable
968  typedef OldSolutionCoefs<Real, &FEMContext::point_value> OldSolutionValueCoefs;
969  typedef OldSolutionCoefs<RealGradient, &FEMContext::point_gradient> OldSolutionGradientCoefs;
970 
971  typedef
972  GenericProjector<OldSolutionValueCoefs,
973  OldSolutionGradientCoefs,
974  DynamicSparseNumberArray<Real,dof_id_type>,
975  MatrixFillAction<Real, Number> > ProjMatFiller;
976 
977  OldSolutionValueCoefs f(*this, &vars);
978  OldSolutionGradientCoefs g(*this, &vars);
979  MatrixFillAction<Real, Number> setter(proj_mat);
980 
981  ProjMatFiller mat_filler(*this, f, &g, setter, vars);
982  mat_filler.project(active_local_elem_range);
983 
984  // Set the SCALAR dof transfer entries too.
985  // Note: We assume that all SCALAR dofs are on the
986  // processor with highest ID
987  if (this->processor_id() == (this->n_processors()-1))
988  {
989  const DofMap & dof_map = this->get_dof_map();
990  for (auto var : make_range(this->n_vars()))
991  if (this->variable(var).type().family == SCALAR)
992  {
993  // We can just map SCALAR dofs directly across
994  std::vector<dof_id_type> new_SCALAR_indices, old_SCALAR_indices;
995  dof_map.SCALAR_dof_indices (new_SCALAR_indices, var, false);
996  dof_map.SCALAR_dof_indices (old_SCALAR_indices, var, true);
997  const unsigned int new_n_dofs =
998  cast_int<unsigned int>(new_SCALAR_indices.size());
999 
1000  for (unsigned int i=0; i<new_n_dofs; i++)
1001  {
1002  proj_mat.set( new_SCALAR_indices[i],
1003  old_SCALAR_indices[i], 1);
1004  }
1005  }
1006  }
1007  }
1008 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
const MeshBase & get_mesh() const
Definition: system.h:2277
void iota(ForwardIter first, ForwardIter last, T value)
Utility::iota was created back when std::iota was just an SGI STL extension.
Definition: utility.h:229
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
virtual void set(const numeric_index_type i, const numeric_index_type j, const T value)=0
Set the element (i,j) to value.
processor_id_type n_processors() const
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ prolong_vectors()

void libMesh::System::prolong_vectors ( )
virtualinherited

Prolong vectors after the mesh has refined.

Definition at line 436 of file system.C.

References libMesh::System::restrict_vectors().

Referenced by libMesh::EquationSystems::reinit_solutions().

437 {
438 #ifdef LIBMESH_ENABLE_AMR
439  // Currently project_vector handles both restriction and prolongation
440  this->restrict_vectors();
441 #endif
442 }
virtual void restrict_vectors()
Restrict vectors after the mesh has coarsened.
Definition: system.C:378

◆ pull_temporal_discretization_data()

void libMesh::RBTemporalDiscretization::pull_temporal_discretization_data ( RBTemporalDiscretization other)
inherited

Pull the temporal discretization data from other.

Definition at line 110 of file rb_temporal_discretization.C.

References libMesh::RBTemporalDiscretization::_control, libMesh::RBTemporalDiscretization::get_delta_t(), libMesh::RBTemporalDiscretization::get_euler_theta(), libMesh::RBTemporalDiscretization::get_n_time_steps(), libMesh::RBTemporalDiscretization::get_time_step(), libMesh::RBTemporalDiscretization::set_control(), libMesh::RBTemporalDiscretization::set_delta_t(), libMesh::RBTemporalDiscretization::set_euler_theta(), libMesh::RBTemporalDiscretization::set_n_time_steps(), and libMesh::RBTemporalDiscretization::set_time_step().

Referenced by process_parameters_file().

111 {
112  this->set_delta_t( other.get_delta_t() );
113  this->set_euler_theta( other.get_euler_theta() );
114  this->set_n_time_steps( other.get_n_time_steps() );
115  this->set_time_step( other.get_time_step() );
116  this->set_control( other._control );
117 }
void set_euler_theta(const Real euler_theta_in)
void set_n_time_steps(const unsigned int K)
void set_control(const std::vector< Real > &control)

◆ qoi_parameter_hessian()

void libMesh::ImplicitSystem::qoi_parameter_hessian ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData hessian 
)
overridevirtualinherited

For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) This Hessian is the output of this method, where for each q_i, H_jk is stored in hessian.second_derivative(i,j,k).

Note that in some cases only current_local_solution is used during assembly, and, therefore, if solution has been altered without update() being called, then the user must call update() before calling this function.

Reimplemented from libMesh::System.

Definition at line 895 of file implicit_system.C.

References libMesh::ImplicitSystem::adjoint_solve(), libMesh::SensitivityData::allocate_hessian_data(), libMesh::ExplicitSystem::assemble_qoi(), libMesh::ExplicitSystem::assemble_qoi_derivative(), libMesh::ImplicitSystem::assembly(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::NumericVector< T >::dot(), libMesh::System::get_adjoint_rhs(), libMesh::System::get_adjoint_solution(), libMesh::System::get_qoi_value(), libMesh::System::get_qoi_values(), libMesh::System::get_sensitivity_solution(), libMesh::QoISet::has_index(), libMesh::System::is_adjoint_already_solved(), libMesh::ImplicitSystem::matrix, libMesh::System::n_qois(), libMesh::Real, libMesh::ExplicitSystem::rhs, libMesh::SensitivityData::second_derivative(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::ParameterVector::size(), libMesh::System::solution, libMesh::TOLERANCE, libMesh::System::update(), and libMesh::SparseMatrix< T >::vector_mult().

898 {
899  // We currently get partial derivatives via finite differencing
900  const Real delta_p = TOLERANCE;
901 
902  ParameterVector & parameters =
903  const_cast<ParameterVector &>(parameters_in);
904 
905  // We'll use one temporary vector for matrix-vector-vector products
906  std::unique_ptr<NumericVector<Number>> tempvec = this->solution->zero_clone();
907 
908  // And another temporary vector to hold a copy of the true solution
909  // so we can safely perturb this->solution.
910  std::unique_ptr<NumericVector<Number>> oldsolution = this->solution->clone();
911 
912  const unsigned int Np = cast_int<unsigned int>
913  (parameters.size());
914  const unsigned int Nq = this->n_qois();
915 
916  // For each quantity of interest q, the parameter sensitivity
917  // Hessian is defined as q''_{kl} = {d^2 q}/{d p_k d p_l}.
918  //
919  // We calculate it from values and partial derivatives of the
920  // quantity of interest function Q, solution u, adjoint solution z,
921  // and residual R, as:
922  //
923  // q''_{kl} =
924  // Q''_{kl} + Q''_{uk}(u)*u'_l + Q''_{ul}(u) * u'_k +
925  // Q''_{uu}(u)*u'_k*u'_l -
926  // R''_{kl}(u,z) -
927  // R''_{uk}(u,z)*u'_l - R''_{ul}(u,z)*u'_k -
928  // R''_{uu}(u,z)*u'_k*u'_l
929  //
930  // See the adjoints model document for more details.
931 
932  // We first do an adjoint solve to get z for each quantity of
933  // interest
934  // if we haven't already or dont have an initial condition for the adjoint
935  if (!this->is_adjoint_already_solved())
936  {
937  this->adjoint_solve(qoi_indices);
938  }
939 
940  // And a sensitivity solve to get u_k for each parameter
941  this->sensitivity_solve(parameters);
942 
943  // Get ready to fill in second derivatives:
944  sensitivities.allocate_hessian_data(qoi_indices, *this, parameters);
945 
946  for (unsigned int k=0; k != Np; ++k)
947  {
948  Number old_parameterk = *parameters[k];
949 
950  // The Hessian is symmetric, so we just calculate the lower
951  // triangle and the diagonal, and we get the upper triangle from
952  // the transpose of the lower
953 
954  for (unsigned int l=0; l != k+1; ++l)
955  {
956  // The second partial derivatives with respect to parameters
957  // are all calculated via a central finite difference
958  // stencil:
959  // F''_{kl} ~= (F(p+dp*e_k+dp*e_l) - F(p+dp*e_k-dp*e_l) -
960  // F(p-dp*e_k+dp*e_l) + F(p-dp*e_k-dp*e_l))/(4*dp^2)
961  // We will add Q''_{kl}(u) and subtract R''_{kl}(u,z) at the
962  // same time.
963  //
964  // We have to be careful with the perturbations to handle
965  // the k=l case
966 
967  Number old_parameterl = *parameters[l];
968 
969  *parameters[k] += delta_p;
970  *parameters[l] += delta_p;
971  this->assemble_qoi(qoi_indices);
972  this->assembly(true, false, true);
973  this->rhs->close();
974  std::vector<Number> partial2q_term = this->get_qoi_values();
975  std::vector<Number> partial2R_term(this->n_qois());
976  for (unsigned int i=0; i != Nq; ++i)
977  if (qoi_indices.has_index(i))
978  partial2R_term[i] = this->rhs->dot(this->get_adjoint_solution(i));
979 
980  *parameters[l] -= 2.*delta_p;
981  this->assemble_qoi(qoi_indices);
982  this->assembly(true, false, true);
983  this->rhs->close();
984  for (unsigned int i=0; i != Nq; ++i)
985  if (qoi_indices.has_index(i))
986  {
987  partial2q_term[i] -= this->get_qoi_value(i);
988  partial2R_term[i] -= this->rhs->dot(this->get_adjoint_solution(i));
989  }
990 
991  *parameters[k] -= 2.*delta_p;
992  this->assemble_qoi(qoi_indices);
993  this->assembly(true, false, true);
994  this->rhs->close();
995  for (unsigned int i=0; i != Nq; ++i)
996  if (qoi_indices.has_index(i))
997  {
998  partial2q_term[i] += this->get_qoi_value(i);
999  partial2R_term[i] += this->rhs->dot(this->get_adjoint_solution(i));
1000  }
1001 
1002  *parameters[l] += 2.*delta_p;
1003  this->assemble_qoi(qoi_indices);
1004  this->assembly(true, false, true);
1005  this->rhs->close();
1006  for (unsigned int i=0; i != Nq; ++i)
1007  if (qoi_indices.has_index(i))
1008  {
1009  partial2q_term[i] -= this->get_qoi_value(i);
1010  partial2R_term[i] -= this->rhs->dot(this->get_adjoint_solution(i));
1011  partial2q_term[i] /= (4. * delta_p * delta_p);
1012  partial2R_term[i] /= (4. * delta_p * delta_p);
1013  }
1014 
1015  for (unsigned int i=0; i != Nq; ++i)
1016  if (qoi_indices.has_index(i))
1017  {
1018  Number current_terms = partial2q_term[i] - partial2R_term[i];
1019  sensitivities.second_derivative(i,k,l) += current_terms;
1020  if (k != l)
1021  sensitivities.second_derivative(i,l,k) += current_terms;
1022  }
1023 
1024  // Don't leave the parameters perturbed
1025  *parameters[l] = old_parameterl;
1026  *parameters[k] = old_parameterk;
1027  }
1028 
1029  // We get (partial q / partial u) and
1030  // (partial R / partial u) from the user, but centrally
1031  // difference to get q_uk and R_uk terms:
1032  // (partial^2 q / partial u partial k)
1033  // q_uk*u'_l = (q_u(p+dp*e_k)*u'_l - q_u(p-dp*e_k)*u'_l)/(2*dp)
1034  // R_uk*z*u'_l = (R_u(p+dp*e_k)*z*u'_l - R_u(p-dp*e_k)*z*u'_l)/(2*dp)
1035  //
1036  // To avoid creating Nq temporary vectors, we add these
1037  // subterms to the sensitivities output one by one.
1038  //
1039  // FIXME: this is probably a bad order of operations for
1040  // controlling floating point error.
1041 
1042  *parameters[k] = old_parameterk + delta_p;
1043  this->assembly(false, true);
1044  this->matrix->close();
1045  this->assemble_qoi_derivative(qoi_indices,
1046  /* include_liftfunc = */ true,
1047  /* apply_constraints = */ false);
1048 
1049  for (unsigned int l=0; l != Np; ++l)
1050  {
1051  this->matrix->vector_mult(*tempvec, this->get_sensitivity_solution(l));
1052  for (unsigned int i=0; i != Nq; ++i)
1053  if (qoi_indices.has_index(i))
1054  {
1055  this->get_adjoint_rhs(i).close();
1056  Number current_terms =
1057  (this->get_adjoint_rhs(i).dot(this->get_sensitivity_solution(l)) -
1058  tempvec->dot(this->get_adjoint_solution(i))) / (2.*delta_p);
1059  sensitivities.second_derivative(i,k,l) += current_terms;
1060 
1061  // We use the _uk terms twice; symmetry lets us reuse
1062  // these calculations for the _ul terms.
1063 
1064  sensitivities.second_derivative(i,l,k) += current_terms;
1065  }
1066  }
1067 
1068  *parameters[k] = old_parameterk - delta_p;
1069  this->assembly(false, true);
1070  this->matrix->close();
1071  this->assemble_qoi_derivative(qoi_indices,
1072  /* include_liftfunc = */ true,
1073  /* apply_constraints = */ false);
1074 
1075  for (unsigned int l=0; l != Np; ++l)
1076  {
1077  this->matrix->vector_mult(*tempvec, this->get_sensitivity_solution(l));
1078  for (unsigned int i=0; i != Nq; ++i)
1079  if (qoi_indices.has_index(i))
1080  {
1081  this->get_adjoint_rhs(i).close();
1082  Number current_terms =
1083  (-this->get_adjoint_rhs(i).dot(this->get_sensitivity_solution(l)) +
1084  tempvec->dot(this->get_adjoint_solution(i))) / (2.*delta_p);
1085  sensitivities.second_derivative(i,k,l) += current_terms;
1086 
1087  // We use the _uk terms twice; symmetry lets us reuse
1088  // these calculations for the _ul terms.
1089 
1090  sensitivities.second_derivative(i,l,k) += current_terms;
1091  }
1092  }
1093 
1094  // Don't leave the parameter perturbed
1095  *parameters[k] = old_parameterk;
1096 
1097  // Our last remaining terms are -R_uu(u,z)*u_k*u_l and
1098  // Q_uu(u)*u_k*u_l
1099  //
1100  // We take directional central finite differences of R_u and Q_u
1101  // to approximate these terms, e.g.:
1102  //
1103  // Q_uu(u)*u_k ~= (Q_u(u+dp*u_k) - Q_u(u-dp*u_k))/(2*dp)
1104 
1105  *this->solution = this->get_sensitivity_solution(k);
1106  *this->solution *= delta_p;
1107  *this->solution += *oldsolution;
1108 
1109  // We've modified solution, so we need to update before calling
1110  // assembly since assembly may only use current_local_solution
1111  this->update();
1112  this->assembly(false, true);
1113  this->matrix->close();
1114  this->assemble_qoi_derivative(qoi_indices,
1115  /* include_liftfunc = */ true,
1116  /* apply_constraints = */ false);
1117 
1118  // The Hessian is symmetric, so we just calculate the lower
1119  // triangle and the diagonal, and we get the upper triangle from
1120  // the transpose of the lower
1121  //
1122  // Note that, because we took the directional finite difference
1123  // with respect to k and not l, we've added an O(delta_p^2)
1124  // error to any permutational symmetry in the Hessian...
1125  for (unsigned int l=0; l != k+1; ++l)
1126  {
1127  this->matrix->vector_mult(*tempvec, this->get_sensitivity_solution(l));
1128  for (unsigned int i=0; i != Nq; ++i)
1129  if (qoi_indices.has_index(i))
1130  {
1131  this->get_adjoint_rhs(i).close();
1132  Number current_terms =
1133  (this->get_adjoint_rhs(i).dot(this->get_sensitivity_solution(l)) -
1134  tempvec->dot(this->get_adjoint_solution(i))) / (2.*delta_p);
1135  sensitivities.second_derivative(i,k,l) += current_terms;
1136  if (k != l)
1137  sensitivities.second_derivative(i,l,k) += current_terms;
1138  }
1139  }
1140 
1141  *this->solution = this->get_sensitivity_solution(k);
1142  *this->solution *= -delta_p;
1143  *this->solution += *oldsolution;
1144 
1145  // We've modified solution, so we need to update before calling
1146  // assembly since assembly may only use current_local_solution
1147  this->update();
1148  this->assembly(false, true);
1149  this->matrix->close();
1150  this->assemble_qoi_derivative(qoi_indices,
1151  /* include_liftfunc = */ true,
1152  /* apply_constraints = */ false);
1153 
1154  for (unsigned int l=0; l != k+1; ++l)
1155  {
1156  this->matrix->vector_mult(*tempvec, this->get_sensitivity_solution(l));
1157  for (unsigned int i=0; i != Nq; ++i)
1158  if (qoi_indices.has_index(i))
1159  {
1160  this->get_adjoint_rhs(i).close();
1161  Number current_terms =
1162  (-this->get_adjoint_rhs(i).dot(this->get_sensitivity_solution(l)) +
1163  tempvec->dot(this->get_adjoint_solution(i))) / (2.*delta_p);
1164  sensitivities.second_derivative(i,k,l) += current_terms;
1165  if (k != l)
1166  sensitivities.second_derivative(i,l,k) += current_terms;
1167  }
1168  }
1169 
1170  // Don't leave the solution perturbed
1171  *this->solution = *oldsolution;
1172  }
1173 
1174  // All parameters have been reset.
1175  // Don't leave the qoi or system changed - principle of least
1176  // surprise.
1177  // We've modified solution, so we need to update before calling
1178  // assembly since assembly may only use current_local_solution
1179  this->update();
1180  this->assembly(true, true);
1181  this->rhs->close();
1182  this->matrix->close();
1183  this->assemble_qoi(qoi_indices);
1184 }
static constexpr Real TOLERANCE
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
Number get_qoi_value(unsigned int qoi_index) const
Definition: system.C:2334
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
NumericVector< Number > & get_sensitivity_solution(unsigned int i=0)
Definition: system.C:1140
NumericVector< Number > * rhs
The system matrix.
virtual std::pair< unsigned int, Real > sensitivity_solve(const ParameterVector &parameters) override
Assembles & solves the linear system(s) (dR/du)*u_p = -dR/dp, for those parameters contained within p...
virtual T dot(const NumericVector< T > &v) const =0
virtual std::pair< unsigned int, Real > adjoint_solve(const QoISet &qoi_indices=QoISet()) override
Assembles & solves the linear system (dR/du)^T*z = dq/du, for those quantities of interest q specifie...
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
bool is_adjoint_already_solved() const
Accessor for the adjoint_already_solved boolean.
Definition: system.h:406
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void update()
Update the local values to reflect the solution on neighboring processors.
Definition: system.C:493
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
The system matrix.
virtual void assemble_qoi(const QoISet &qoi_indices=QoISet()) override
Prepares qoi for quantity of interest assembly, then calls user qoi function.
virtual void assemble_qoi_derivative(const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true) override
Prepares adjoint_rhs for quantity of interest derivative assembly, then calls user qoi derivative fun...
NumericVector< Number > & get_adjoint_solution(unsigned int i=0)
Definition: system.C:1193
std::vector< Number > get_qoi_values() const
Returns a copy of qoi, not a reference.
Definition: system.C:2341
NumericVector< Number > & get_adjoint_rhs(unsigned int i=0)
Definition: system.C:1255

◆ qoi_parameter_hessian_vector_product()

void libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product ( const QoISet qoi_indices,
const ParameterVector parameters,
const ParameterVector vector,
SensitivityData product 
)
overridevirtualinherited

For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) The Hessian-vector product, for a vector v_k in parameter space, is S_j = H_jk v_k This product is the output of this method, where for each q_i, S_j is stored in sensitivities[i][j].

Reimplemented from libMesh::System.

Definition at line 690 of file implicit_system.C.

References libMesh::ImplicitSystem::adjoint_solve(), libMesh::SensitivityData::allocate_data(), libMesh::ExplicitSystem::assemble_qoi(), libMesh::ExplicitSystem::assemble_qoi_derivative(), libMesh::ImplicitSystem::assembly(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::ParameterVector::deep_copy(), libMesh::NumericVector< T >::dot(), libMesh::System::get_adjoint_rhs(), libMesh::System::get_adjoint_solution(), libMesh::System::get_qoi_value(), libMesh::System::get_qoi_values(), libMesh::System::get_weighted_sensitivity_adjoint_solution(), libMesh::System::get_weighted_sensitivity_solution(), libMesh::QoISet::has_index(), libMesh::System::is_adjoint_already_solved(), libMesh::ImplicitSystem::matrix, libMesh::System::n_qois(), libMesh::Real, libMesh::ExplicitSystem::rhs, libMesh::ParameterVector::size(), libMesh::System::solution, libMesh::TOLERANCE, libMesh::ParameterVector::value_copy(), libMesh::SparseMatrix< T >::vector_mult(), libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve(), and libMesh::ImplicitSystem::weighted_sensitivity_solve().

694 {
695  // We currently get partial derivatives via finite differencing
696  const Real delta_p = TOLERANCE;
697 
698  ParameterVector & parameters =
699  const_cast<ParameterVector &>(parameters_in);
700 
701  // We'll use a single temporary vector for matrix-vector-vector products
702  std::unique_ptr<NumericVector<Number>> tempvec = this->solution->zero_clone();
703 
704  const unsigned int Np = cast_int<unsigned int>
705  (parameters.size());
706  const unsigned int Nq = this->n_qois();
707 
708  // For each quantity of interest q, the parameter sensitivity
709  // Hessian is defined as q''_{kl} = {d^2 q}/{d p_k d p_l}.
710  // Given a vector of parameter perturbation weights w_l, this
711  // function evaluates the hessian-vector product sum_l(q''_{kl}*w_l)
712  //
713  // We calculate it from values and partial derivatives of the
714  // quantity of interest function Q, solution u, adjoint solution z,
715  // parameter sensitivity adjoint solutions z^l, and residual R, as:
716  //
717  // sum_l(q''_{kl}*w_l) =
718  // sum_l(w_l * Q''_{kl}) + Q''_{uk}(u)*(sum_l(w_l u'_l)) -
719  // R'_k(u, sum_l(w_l*z^l)) - R'_{uk}(u,z)*(sum_l(w_l u'_l) -
720  // sum_l(w_l*R''_{kl}(u,z))
721  //
722  // See the adjoints model document for more details.
723 
724  // We first do an adjoint solve to get z for each quantity of
725  // interest
726  // if we haven't already or dont have an initial condition for the adjoint
727  if (!this->is_adjoint_already_solved())
728  {
729  this->adjoint_solve(qoi_indices);
730  }
731 
732  // Get ready to fill in sensitivities:
733  sensitivities.allocate_data(qoi_indices, *this, parameters);
734 
735  // We can't solve for all the solution sensitivities u'_l or for all
736  // of the parameter sensitivity adjoint solutions z^l without
737  // requiring O(Nq*Np) linear solves. So we'll solve directly for their
738  // weighted sum - this is just O(Nq) solves.
739 
740  // First solve for sum_l(w_l u'_l).
741  this->weighted_sensitivity_solve(parameters, vector);
742 
743  // Then solve for sum_l(w_l z^l).
744  this->weighted_sensitivity_adjoint_solve(parameters, vector, qoi_indices);
745 
746  for (unsigned int k=0; k != Np; ++k)
747  {
748  // We approximate sum_l(w_l * Q''_{kl}) with a central
749  // differencing perturbation:
750  // sum_l(w_l * Q''_{kl}) ~=
751  // (Q(p + dp*w_l*e_l + dp*e_k) - Q(p - dp*w_l*e_l + dp*e_k) -
752  // Q(p + dp*w_l*e_l - dp*e_k) + Q(p - dp*w_l*e_l - dp*e_k))/(4*dp^2)
753 
754  // The sum(w_l*R''_kl) term requires the same sort of perturbation,
755  // and so we subtract it in at the same time:
756  // sum_l(w_l * R''_{kl}) ~=
757  // (R(p + dp*w_l*e_l + dp*e_k) - R(p - dp*w_l*e_l + dp*e_k) -
758  // R(p + dp*w_l*e_l - dp*e_k) + R(p - dp*w_l*e_l - dp*e_k))/(4*dp^2)
759 
760  ParameterVector oldparameters, parameterperturbation;
761  parameters.deep_copy(oldparameters);
762  vector.deep_copy(parameterperturbation);
763  parameterperturbation *= delta_p;
764  parameters += parameterperturbation;
765 
766  Number old_parameter = *parameters[k];
767 
768  *parameters[k] = old_parameter + delta_p;
769  this->assemble_qoi(qoi_indices);
770  this->assembly(true, false, true);
771  this->rhs->close();
772  std::vector<Number> partial2q_term = this->get_qoi_values();
773  std::vector<Number> partial2R_term(this->n_qois());
774  for (unsigned int i=0; i != Nq; ++i)
775  if (qoi_indices.has_index(i))
776  partial2R_term[i] = this->rhs->dot(this->get_adjoint_solution(i));
777 
778  *parameters[k] = old_parameter - delta_p;
779  this->assemble_qoi(qoi_indices);
780  this->assembly(true, false, true);
781  this->rhs->close();
782  for (unsigned int i=0; i != Nq; ++i)
783  if (qoi_indices.has_index(i))
784  {
785  partial2q_term[i] -= this->get_qoi_value(i);
786  partial2R_term[i] -= this->rhs->dot(this->get_adjoint_solution(i));
787  }
788 
789  oldparameters.value_copy(parameters);
790  parameterperturbation *= -1.0;
791  parameters += parameterperturbation;
792 
793  // Re-center old_parameter, which may be affected by vector
794  old_parameter = *parameters[k];
795 
796  *parameters[k] = old_parameter + delta_p;
797  this->assemble_qoi(qoi_indices);
798  this->assembly(true, false, true);
799  this->rhs->close();
800  for (unsigned int i=0; i != Nq; ++i)
801  if (qoi_indices.has_index(i))
802  {
803  partial2q_term[i] -= this->get_qoi_value(i);
804  partial2R_term[i] -= this->rhs->dot(this->get_adjoint_solution(i));
805  }
806 
807  *parameters[k] = old_parameter - delta_p;
808  this->assemble_qoi(qoi_indices);
809  this->assembly(true, false, true);
810  this->rhs->close();
811  for (unsigned int i=0; i != Nq; ++i)
812  if (qoi_indices.has_index(i))
813  {
814  partial2q_term[i] += this->get_qoi_value(i);
815  partial2R_term[i] += this->rhs->dot(this->get_adjoint_solution(i));
816  }
817 
818  for (unsigned int i=0; i != Nq; ++i)
819  if (qoi_indices.has_index(i))
820  {
821  partial2q_term[i] /= (4. * delta_p * delta_p);
822  partial2R_term[i] /= (4. * delta_p * delta_p);
823  }
824 
825  for (unsigned int i=0; i != Nq; ++i)
826  if (qoi_indices.has_index(i))
827  sensitivities[i][k] = partial2q_term[i] - partial2R_term[i];
828 
829  // We get (partial q / partial u), R, and
830  // (partial R / partial u) from the user, but centrally
831  // difference to get q_uk, R_k, and R_uk terms:
832  // (partial R / partial k)
833  // R_k*sum(w_l*z^l) = (R(p+dp*e_k)*sum(w_l*z^l) - R(p-dp*e_k)*sum(w_l*z^l))/(2*dp)
834  // (partial^2 q / partial u partial k)
835  // q_uk = (q_u(p+dp*e_k) - q_u(p-dp*e_k))/(2*dp)
836  // (partial^2 R / partial u partial k)
837  // R_uk*z*sum(w_l*u'_l) = (R_u(p+dp*e_k)*z*sum(w_l*u'_l) - R_u(p-dp*e_k)*z*sum(w_l*u'_l))/(2*dp)
838 
839  // To avoid creating Nq temporary vectors for q_uk or R_uk, we add
840  // subterms to the sensitivities output one by one.
841  //
842  // FIXME: this is probably a bad order of operations for
843  // controlling floating point error.
844 
845  *parameters[k] = old_parameter + delta_p;
846  this->assembly(true, true);
847  this->rhs->close();
848  this->matrix->close();
849  this->assemble_qoi_derivative(qoi_indices,
850  /* include_liftfunc = */ true,
851  /* apply_constraints = */ false);
852 
853  this->matrix->vector_mult(*tempvec, this->get_weighted_sensitivity_solution());
854 
855  for (unsigned int i=0; i != Nq; ++i)
856  if (qoi_indices.has_index(i))
857  {
858  this->get_adjoint_rhs(i).close();
859  sensitivities[i][k] += (this->get_adjoint_rhs(i).dot(this->get_weighted_sensitivity_solution()) -
861  this->get_adjoint_solution(i).dot(*tempvec)) / (2.*delta_p);
862  }
863 
864  *parameters[k] = old_parameter - delta_p;
865  this->assembly(true, true);
866  this->rhs->close();
867  this->matrix->close();
868  this->assemble_qoi_derivative(qoi_indices,
869  /* include_liftfunc = */ true,
870  /* apply_constraints = */ false);
871 
872  this->matrix->vector_mult(*tempvec, this->get_weighted_sensitivity_solution());
873 
874  for (unsigned int i=0; i != Nq; ++i)
875  if (qoi_indices.has_index(i))
876  {
877  this->get_adjoint_rhs(i).close();
878  sensitivities[i][k] += (-this->get_adjoint_rhs(i).dot(this->get_weighted_sensitivity_solution()) +
880  this->get_adjoint_solution(i).dot(*tempvec)) / (2.*delta_p);
881  }
882  }
883 
884  // All parameters have been reset.
885  // Don't leave the qoi or system changed - principle of least
886  // surprise.
887  this->assembly(true, true);
888  this->rhs->close();
889  this->matrix->close();
890  this->assemble_qoi(qoi_indices);
891 }
static constexpr Real TOLERANCE
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
Number get_qoi_value(unsigned int qoi_index) const
Definition: system.C:2334
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
virtual std::pair< unsigned int, Real > weighted_sensitivity_solve(const ParameterVector &parameters, const ParameterVector &weights) override
Assembles & solves the linear system(s) (dR/du)*u_w = sum(w_p*-dR/dp), for those parameters p contain...
NumericVector< Number > * rhs
The system matrix.
virtual T dot(const NumericVector< T > &v) const =0
virtual std::pair< unsigned int, Real > adjoint_solve(const QoISet &qoi_indices=QoISet()) override
Assembles & solves the linear system (dR/du)^T*z = dq/du, for those quantities of interest q specifie...
NumericVector< Number > & get_weighted_sensitivity_solution()
Definition: system.C:1167
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
bool is_adjoint_already_solved() const
Accessor for the adjoint_already_solved boolean.
Definition: system.h:406
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
The system matrix.
virtual void assemble_qoi(const QoISet &qoi_indices=QoISet()) override
Prepares qoi for quantity of interest assembly, then calls user qoi function.
virtual void assemble_qoi_derivative(const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true) override
Prepares adjoint_rhs for quantity of interest derivative assembly, then calls user qoi derivative fun...
NumericVector< Number > & get_adjoint_solution(unsigned int i=0)
Definition: system.C:1193
virtual std::pair< unsigned int, Real > weighted_sensitivity_adjoint_solve(const ParameterVector &parameters, const ParameterVector &weights, const QoISet &qoi_indices=QoISet()) override
Assembles & solves the linear system(s) (dR/du)^T*z_w = sum(w_p*(d^2q/dudp - d^2R/dudp*z)), for those parameters p contained within parameters, weighted by the values w_p found within weights.
NumericVector< Number > & get_weighted_sensitivity_adjoint_solution(unsigned int i=0)
Definition: system.C:1225
std::vector< Number > get_qoi_values() const
Returns a copy of qoi, not a reference.
Definition: system.C:2341
NumericVector< Number > & get_adjoint_rhs(unsigned int i=0)
Definition: system.C:1255

◆ qoi_parameter_sensitivity()

void libMesh::System::qoi_parameter_sensitivity ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData sensitivities 
)
virtualinherited

Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j].

Note
parameters is a const vector, not a vector-of-const; parameter values in this vector need to be mutable for finite differencing to work.

Automatically chooses the forward method for problems with more quantities of interest than parameters, or the adjoint method otherwise.

This method is only usable in derived classes which override an implementation.

Definition at line 585 of file system.C.

References libMesh::System::adjoint_qoi_parameter_sensitivity(), libMesh::System::forward_qoi_parameter_sensitivity(), libMesh::ParameterVector::size(), and libMesh::QoISet::size().

588 {
589  // Forward sensitivities are more efficient for Nq > Np
590  if (qoi_indices.size(*this) > parameters.size())
591  forward_qoi_parameter_sensitivity(qoi_indices, parameters, sensitivities);
592  // Adjoint sensitivities are more efficient for Np > Nq,
593  // and an adjoint may be more reusable than a forward
594  // solution sensitivity in the Np == Nq case.
595  else
596  adjoint_qoi_parameter_sensitivity(qoi_indices, parameters, sensitivities);
597 }
virtual void forward_qoi_parameter_sensitivity(const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
Solves for parameter sensitivities using the forward method.
Definition: system.h:2567
virtual void adjoint_qoi_parameter_sensitivity(const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
Solves for parameter sensitivities using the adjoint method.
Definition: system.h:2558

◆ re_update()

void libMesh::TransientSystem< RBConstruction >::re_update ( )
overrideprotectedvirtualinherited

Re-update the local values when the mesh has changed.

This method takes the data updated by update() and makes it up-to-date on the current mesh.

Reimplemented from libMesh::System.

Definition at line 76 of file transient_system.C.

77 {
78  // re_update the parent system
79  Base::re_update ();
80 
81  const std::vector<dof_id_type> & send_list = this->get_dof_map().get_send_list ();
82 
83  const dof_id_type first_local_dof = Base::get_dof_map().first_dof();
84  const dof_id_type end_local_dof = Base::get_dof_map().end_dof();
85 
86  // Check sizes
87  libmesh_assert_greater_equal (end_local_dof, first_local_dof);
88  libmesh_assert_greater_equal (older_local_solution->size(), send_list.size());
89  libmesh_assert_greater_equal (old_local_solution->size(), send_list.size());
90 
91  // Even if we don't have to do anything ourselves, localize() may
92  // use parallel_only tools
93  // if (first_local_dof == end_local_dof)
94  // return;
95 
96  // Update the old & older solutions with the send_list,
97  // which may have changed since their last update.
98  older_local_solution->localize (first_local_dof,
99  end_local_dof-1,
100  send_list);
101 
102  old_local_solution->localize (first_local_dof,
103  end_local_dof-1,
104  send_list);
105 }
virtual numeric_index_type size() const =0
NumericVector< Number > * old_local_solution
All the values I need to compute my contribution to the simulation at hand.
NumericVector< Number > * older_local_solution
All the values I need to compute my contribution to the simulation at hand.
const DofMap & get_dof_map() const
Definition: system.h:2293
const std::vector< dof_id_type > & get_send_list() const
Definition: dof_map.h:511
uint8_t dof_id_type
Definition: id_types.h:67
virtual void localize(std::vector< T > &v_local) const =0
Creates a copy of the global vector in the local vector v_local.

◆ read_header()

void libMesh::System::read_header ( Xdr io,
std::string_view  version,
const bool  read_header = true,
const bool  read_additional_data = true,
const bool  read_legacy_format = false 
)
inherited

Reads the basic data header for this System.

Definition at line 97 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_written_var_indices, libMesh::System::add_variable(), libMesh::System::add_vector(), TIMPI::Communicator::broadcast(), libMesh::System::clear(), libMesh::ParallelObject::comm(), libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_mesh(), libMesh::OrderWrapper::get_order(), libMesh::FEType::inf_map, libMesh::libmesh_assert(), libMesh::MeshBase::mesh_dimension(), libMesh::MONOMIAL, libMesh::on_command_line(), libMesh::FEType::order, libMesh::out, libMesh::ParallelObject::processor_id(), libMesh::FEType::radial_family, libMesh::FEType::radial_order, libMesh::Xdr::reading(), libMesh::System::variable_number(), libMesh::Xdr::version(), and libMesh::XYZ.

Referenced by libMesh::EquationSystems::read(), and libMesh::RBEvaluation::read_in_vectors_from_multiple_files().

102 {
103  // This method implements the input of a
104  // System object, embedded in the output of
105  // an EquationSystems<T_sys>. This warrants some
106  // documentation. The output file essentially
107  // consists of 5 sections:
108  //
109  // for this system
110  //
111  // 5.) The number of variables in the system (unsigned int)
112  //
113  // for each variable in the system
114  //
115  // 6.) The name of the variable (string)
116  //
117  // 6.1.) Variable subdomains
118  //
119  // 7.) Combined in an FEType:
120  // - The approximation order(s) of the variable
121  // (Order Enum, cast to int/s)
122  // - The finite element family/ies of the variable
123  // (FEFamily Enum, cast to int/s)
124  //
125  // end variable loop
126  //
127  // 8.) The number of additional vectors (unsigned int),
128  //
129  // for each additional vector in the system object
130  //
131  // 9.) the name of the additional vector (string)
132  //
133  // end system
134  libmesh_assert (io.reading());
135 
136  // Possibly clear data structures and start from scratch.
137  if (read_header_in)
138  this->clear ();
139 
140  // Figure out if we need to read infinite element information.
141  // This will be true if the version string contains " with infinite elements"
142  const bool read_ifem_info =
143  (version.rfind(" with infinite elements") < version.size()) ||
144  libMesh::on_command_line ("--read-ifem-systems");
145 
146 
147  {
148  // 5.)
149  // Read the number of variables in the system
150  unsigned int nv=0;
151  if (this->processor_id() == 0)
152  io.data (nv);
153  this->comm().broadcast(nv);
154 
155  _written_var_indices.clear();
156  _written_var_indices.resize(nv, 0);
157 
158  for (unsigned int var=0; var<nv; var++)
159  {
160  // 6.)
161  // Read the name of the var-th variable
162  std::string var_name;
163  if (this->processor_id() == 0)
164  io.data (var_name);
165  this->comm().broadcast(var_name);
166 
167  // 6.1.)
168  std::set<subdomain_id_type> domains;
169  if (io.version() >= LIBMESH_VERSION_ID(0,7,2))
170  {
171  std::vector<subdomain_id_type> domain_array;
172  if (this->processor_id() == 0)
173  io.data (domain_array);
174  for (const auto & id : domain_array)
175  domains.insert(id);
176  }
177  this->comm().broadcast(domains);
178 
179  // 7.)
180  // Read the approximation order(s) of the var-th variable
181  int order=0;
182  if (this->processor_id() == 0)
183  io.data (order);
184  this->comm().broadcast(order);
185 
186 
187  // do the same for infinite element radial_order
188  int rad_order=0;
189  if (read_ifem_info)
190  {
191  if (this->processor_id() == 0)
192  io.data(rad_order);
193  this->comm().broadcast(rad_order);
194  }
195 
196  // Read the finite element type of the var-th variable
197  int fam=0;
198  if (this->processor_id() == 0)
199  io.data (fam);
200  this->comm().broadcast(fam);
201  FEType type;
202  type.order = static_cast<Order>(order);
203  type.family = static_cast<FEFamily>(fam);
204 
205  // Check for incompatibilities. The shape function indexing was
206  // changed for the monomial and xyz finite element families to
207  // simplify extension to arbitrary p. The consequence is that
208  // old restart files will not be read correctly. This is expected
209  // to be an unlikely occurrence, but catch it anyway.
210  if (read_legacy_format)
211  if ((type.family == MONOMIAL || type.family == XYZ) &&
212  ((type.order.get_order() > 2 && this->get_mesh().mesh_dimension() == 2) ||
213  (type.order.get_order() > 1 && this->get_mesh().mesh_dimension() == 3)))
214  {
215  libmesh_here();
216  libMesh::out << "*****************************************************************\n"
217  << "* WARNING: reading a potentially incompatible restart file!!! *\n"
218  << "* contact libmesh-users@lists.sourceforge.net for more details *\n"
219  << "*****************************************************************"
220  << std::endl;
221  }
222 
223  // Read additional information for infinite elements
224  int radial_fam=0;
225  int i_map=0;
226  if (read_ifem_info)
227  {
228  if (this->processor_id() == 0)
229  io.data (radial_fam);
230  this->comm().broadcast(radial_fam);
231  if (this->processor_id() == 0)
232  io.data (i_map);
233  this->comm().broadcast(i_map);
234  }
235 
236 #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
237 
238  type.radial_order = static_cast<Order>(rad_order);
239  type.radial_family = static_cast<FEFamily>(radial_fam);
240  type.inf_map = static_cast<InfMapType>(i_map);
241 
242 #endif
243 
244  if (read_header_in)
245  {
246  if (domains.empty())
247  _written_var_indices[var] = this->add_variable (var_name, type);
248  else
249  _written_var_indices[var] = this->add_variable (var_name, type, &domains);
250  }
251  else
252  _written_var_indices[var] = this->variable_number(var_name);
253  }
254  }
255 
256  // 8.)
257  // Read the number of additional vectors.
258  unsigned int nvecs=0;
259  if (this->processor_id() == 0)
260  io.data (nvecs);
261  this->comm().broadcast(nvecs);
262 
263  // If nvecs > 0, this means that write_additional_data
264  // was true when this file was written. We will need to
265  // make use of this fact later.
266  this->_additional_data_written = nvecs;
267 
268  for (unsigned int vec=0; vec<nvecs; vec++)
269  {
270  // 9.)
271  // Read the name of the vec-th additional vector
272  std::string vec_name;
273  if (this->processor_id() == 0)
274  io.data (vec_name);
275  this->comm().broadcast(vec_name);
276  if (io.version() >= LIBMESH_VERSION_ID(1,7,0))
277  {
278  int vec_projection = 0;
279  if (this->processor_id() == 0)
280  io.data (vec_projection);
281  this->comm().broadcast(vec_projection);
282  int vec_type;
283  if (this->processor_id() == 0)
284  io.data (vec_type);
285  this->comm().broadcast(vec_type);
286 
287  if (read_additional_data)
288  this->add_vector(vec_name, bool(vec_projection), ParallelType(vec_type));
289  }
290  else if (read_additional_data)
291  // Systems now can handle adding post-initialization vectors
292  // libmesh_assert(this->_can_add_vectors);
293  // Some systems may have added their own vectors already
294  // libmesh_assert_equal_to (this->_vectors.count(vec_name), 0);
295  this->add_vector(vec_name);
296  }
297 }
virtual void clear()
Clear all the data structures associated with the system.
Definition: system.C:168
Order
defines an enum for polynomial orders.
Definition: enum_order.h:40
const Parallel::Communicator & comm() const
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751
const MeshBase & get_mesh() const
Definition: system.h:2277
unsigned int variable_number(std::string_view var) const
Definition: system.C:1557
libmesh_assert(ctx)
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1305
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
InfMapType
defines an enum for the types of coordinate mappings available in infinite elements.
OStreamProxy out
unsigned int mesh_dimension() const
Definition: mesh_base.C:324
bool on_command_line(std::string arg)
Definition: libmesh.C:924
FEFamily
defines an enum for finite element families.
processor_id_type processor_id() const
std::vector< unsigned int > _written_var_indices
This vector is used only when reading in a system from file.
Definition: system.h:2235
ParallelType
Defines an enum for parallel data structure types.

◆ read_legacy_data()

void libMesh::System::read_legacy_data ( Xdr io,
const bool  read_additional_data = true 
)
inherited

Reads additional data, namely vectors, for this System.

Definition at line 302 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_vectors, libMesh::System::_written_var_indices, TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::Xdr::data(), libMesh::System::get_mesh(), libMesh::DofObject::invalid_id, libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_dofs(), libMesh::System::n_vars(), libMesh::System::number(), libMesh::ParallelObject::processor_id(), libMesh::Xdr::reading(), libMesh::System::solution, and libMesh::zero.

304 {
305  libmesh_deprecated();
306 
307  // This method implements the output of the vectors
308  // contained in this System object, embedded in the
309  // output of an EquationSystems<T_sys>.
310  //
311  // 10.) The global solution vector, re-ordered to be node-major
312  // (More on this later.)
313  //
314  // for each additional vector in the object
315  //
316  // 11.) The global additional vector, re-ordered to be
317  // node-major (More on this later.)
318  libmesh_assert (io.reading());
319 
320  // directly-read and reordered buffers, declared here for reuse
321  // without heap juggling.
322  std::vector<Number> global_vector;
323  std::vector<Number> reordered_vector;
324 
325  auto reorder_vector_into =
326  [this, &global_vector, &reordered_vector]
327  (NumericVector<Number> & vec)
328  {
329  this->comm().broadcast(global_vector);
330 
331  // If we have been reading multiple vectors, they should all be
332  // the same size.
333  libmesh_assert (reordered_vector.empty() ||
334  reordered_vector.size() == global_vector.size());
335 
336  // Remember that the stored vector is node-major.
337  // We need to put it into whatever application-specific
338  // ordering we may have using the dof_map.
339  reordered_vector.resize(global_vector.size());
340 
341  //libMesh::out << "global_vector.size()=" << global_vector.size() << std::endl;
342  //libMesh::out << "this->n_dofs()=" << this->n_dofs() << std::endl;
343 
344  libmesh_assert_equal_to (global_vector.size(), this->n_dofs());
345 
346  dof_id_type cnt=0;
347 
348  const unsigned int sys = this->number();
349  const unsigned int nv = cast_int<unsigned int>
350  (this->_written_var_indices.size());
351  libmesh_assert_less_equal (nv, this->n_vars());
352 
353  for (unsigned int data_var=0; data_var<nv; data_var++)
354  {
355  const unsigned int var = _written_var_indices[data_var];
356 
357  // First reorder the nodal DOF values
358  for (auto & node : this->get_mesh().node_ptr_range())
359  for (auto index : make_range(node->n_comp(sys,var)))
360  {
361  libmesh_assert_not_equal_to (node->dof_number(sys, var, index),
363 
364  libmesh_assert_less (cnt, global_vector.size());
365 
366  reordered_vector[node->dof_number(sys, var, index)] =
367  global_vector[cnt++];
368  }
369 
370  // Then reorder the element DOF values
371  for (auto & elem : this->get_mesh().active_element_ptr_range())
372  for (auto index : make_range(elem->n_comp(sys,var)))
373  {
374  libmesh_assert_not_equal_to (elem->dof_number(sys, var, index),
376 
377  libmesh_assert_less (cnt, global_vector.size());
378 
379  reordered_vector[elem->dof_number(sys, var, index)] =
380  global_vector[cnt++];
381  }
382  }
383 
384  // use the overloaded operator=(std::vector) to assign the values
385  vec = reordered_vector;
386  };
387 
388  // 10.)
389  // Read and set the solution vector
390  if (this->processor_id() == 0)
391  io.data (global_vector);
392  reorder_vector_into(*(this->solution));
393 
394  // For each additional vector, simply go through the list.
395  // ONLY attempt to do this IF additional data was actually
396  // written to the file for this system (controlled by the
397  // _additional_data_written flag).
398  if (this->_additional_data_written)
399  {
400  const std::size_t nvecs = this->_vectors.size();
401 
402  // If the number of additional vectors written is non-zero, and
403  // the number of additional vectors we have is non-zero, and
404  // they don't match, then something is wrong and we can't be
405  // sure we're reading data into the correct places.
406  if (read_additional_data && nvecs &&
407  nvecs != this->_additional_data_written)
408  libmesh_error_msg
409  ("Additional vectors in file do not match system");
410 
411  auto pos = this->_vectors.begin();
412 
413  for (std::size_t i = 0; i != this->_additional_data_written; ++i)
414  {
415  // 11.)
416  // Read the values of the vec-th additional vector.
417  // Prior do _not_ clear, but fill with zero, since the
418  // additional vectors _have_ to have the same size
419  // as the solution vector
420  std::fill (global_vector.begin(), global_vector.end(), libMesh::zero);
421 
422  if (this->processor_id() == 0)
423  io.data (global_vector);
424 
425  // If read_additional_data==true and we have additional vectors,
426  // then we will keep this vector data; otherwise we are going to
427  // throw it away.
428  if (read_additional_data && nvecs)
429  {
430  std::fill (reordered_vector.begin(),
431  reordered_vector.end(),
432  libMesh::zero);
433 
434  reorder_vector_into(*(pos->second));
435  }
436 
437  // If we've got vectors then we need to be iterating through
438  // those too
439  if (pos != this->_vectors.end())
440  ++pos;
441  }
442  } // end if (_additional_data_written)
443 }
const Parallel::Communicator & comm() const
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
const Number zero
.
Definition: libmesh.h:280
const MeshBase & get_mesh() const
Definition: system.h:2277
dof_id_type n_dofs() const
Definition: system.C:113
unsigned int number() const
Definition: system.h:2269
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static const dof_id_type invalid_id
An invalid id to distinguish an uninitialized DofObject.
Definition: dof_object.h:477
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
template class LIBMESH_EXPORT NumericVector< Number >
std::vector< unsigned int > _written_var_indices
This vector is used only when reading in a system from file.
Definition: system.h:2235
uint8_t dof_id_type
Definition: id_types.h:67

◆ read_parallel_data() [1/2]

template<typename InValType >
void libMesh::System::read_parallel_data ( Xdr io,
const bool  read_additional_data 
)
inherited

Reads additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh. This method will read an individual file for each processor in the simulation where the local solution components for that processor are stored.

This method implements the output of the vectors contained in this System object, embedded in the output of an EquationSystems<T_sys>.

9.) The global solution vector, re-ordered to be node-major (More on this later.)

for each additional vector in the object

10.) The global additional vector, re-ordered to be node-major (More on this later.)

Note that the actual IO is handled through the Xdr class (to be renamed later?) which provides a uniform interface to both the XDR (eXternal Data Representation) interface and standard ASCII output. Thus this one section of code will read XDR or ASCII files with no changes.

Definition at line 449 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_vectors, libMesh::System::_written_var_indices, libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::DofObject::invalid_id, libMesh::Xdr::is_open(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::ParallelObject::n_processors(), libMesh::System::n_vars(), libMesh::System::number(), libMesh::ParallelObject::processor_id(), libMesh::Xdr::reading(), libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::System::solution, libMesh::Variable::type(), and libMesh::System::variable().

451 {
471  // PerfLog pl("IO Performance",false);
472  // pl.push("read_parallel_data");
473  dof_id_type total_read_size = 0;
474 
475  libmesh_assert (io.reading());
476  libmesh_assert (io.is_open());
477 
478  // build the ordered nodes and element maps.
479  // when writing/reading parallel files we need to iterate
480  // over our nodes/elements in order of increasing global id().
481  // however, this is not guaranteed to be ordering we obtain
482  // by using the node_iterators/element_iterators directly.
483  // so build a set, sorted by id(), that provides the ordering.
484  // further, for memory economy build the set but then transfer
485  // its contents to vectors, which will be sorted.
486  std::vector<const DofObject *> ordered_nodes, ordered_elements;
487  {
488  std::set<const DofObject *, CompareDofObjectsByID>
489  ordered_nodes_set (this->get_mesh().local_nodes_begin(),
490  this->get_mesh().local_nodes_end());
491 
492  ordered_nodes.insert(ordered_nodes.end(),
493  ordered_nodes_set.begin(),
494  ordered_nodes_set.end());
495  }
496  {
497  std::set<const DofObject *, CompareDofObjectsByID>
498  ordered_elements_set (this->get_mesh().local_elements_begin(),
499  this->get_mesh().local_elements_end());
500 
501  ordered_elements.insert(ordered_elements.end(),
502  ordered_elements_set.begin(),
503  ordered_elements_set.end());
504  }
505 
506  // std::vector<Number> io_buffer;
507  std::vector<InValType> io_buffer;
508 
509  // 9.)
510  //
511  // Actually read the solution components
512  // for the ith system to disk
513  io.data(io_buffer);
514 
515  total_read_size += cast_int<dof_id_type>(io_buffer.size());
516 
517  const unsigned int sys_num = this->number();
518  const unsigned int nv = cast_int<unsigned int>
519  (this->_written_var_indices.size());
520  libmesh_assert_less_equal (nv, this->n_vars());
521 
522  dof_id_type cnt=0;
523 
524  // Loop over each non-SCALAR variable and each node, and read out the value.
525  for (unsigned int data_var=0; data_var<nv; data_var++)
526  {
527  const unsigned int var = _written_var_indices[data_var];
528  if (this->variable(var).type().family != SCALAR)
529  {
530  // First read the node DOF values
531  for (const auto & node : ordered_nodes)
532  for (auto comp : make_range(node->n_comp(sys_num,var)))
533  {
534  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
536  libmesh_assert_less (cnt, io_buffer.size());
537  this->solution->set(node->dof_number(sys_num, var, comp), io_buffer[cnt++]);
538  }
539 
540  // Then read the element DOF values
541  for (const auto & elem : ordered_elements)
542  for (auto comp : make_range(elem->n_comp(sys_num,var)))
543  {
544  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
546  libmesh_assert_less (cnt, io_buffer.size());
547  this->solution->set(elem->dof_number(sys_num, var, comp), io_buffer[cnt++]);
548  }
549  }
550  }
551 
552  // Finally, read the SCALAR variables on the last processor
553  for (unsigned int data_var=0; data_var<nv; data_var++)
554  {
555  const unsigned int var = _written_var_indices[data_var];
556  if (this->variable(var).type().family == SCALAR)
557  {
558  if (this->processor_id() == (this->n_processors()-1))
559  {
560  const DofMap & dof_map = this->get_dof_map();
561  std::vector<dof_id_type> SCALAR_dofs;
562  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
563 
564  for (auto dof : SCALAR_dofs)
565  this->solution->set(dof, io_buffer[cnt++]);
566  }
567  }
568  }
569 
570  // And we're done setting solution entries
571  this->solution->close();
572 
573  // For each additional vector, simply go through the list.
574  // ONLY attempt to do this IF additional data was actually
575  // written to the file for this system (controlled by the
576  // _additional_data_written flag).
577  if (this->_additional_data_written)
578  {
579  const std::size_t nvecs = this->_vectors.size();
580 
581  // If the number of additional vectors written is non-zero, and
582  // the number of additional vectors we have is non-zero, and
583  // they don't match, then something is wrong and we can't be
584  // sure we're reading data into the correct places.
585  if (read_additional_data && nvecs &&
586  nvecs != this->_additional_data_written)
587  libmesh_error_msg
588  ("Additional vectors in file do not match system");
589 
590  auto pos = _vectors.begin();
591 
592  for (std::size_t i = 0; i != this->_additional_data_written; ++i)
593  {
594  cnt=0;
595  io_buffer.clear();
596 
597  // 10.)
598  //
599  // Actually read the additional vector components
600  // for the ith system from disk
601  io.data(io_buffer);
602 
603  total_read_size += cast_int<dof_id_type>(io_buffer.size());
604 
605  // If read_additional_data==true and we have additional vectors,
606  // then we will keep this vector data; otherwise we are going to
607  // throw it away.
608  if (read_additional_data && nvecs)
609  {
610  // Loop over each non-SCALAR variable and each node, and read out the value.
611  for (unsigned int data_var=0; data_var<nv; data_var++)
612  {
613  const unsigned int var = _written_var_indices[data_var];
614  if (this->variable(var).type().family != SCALAR)
615  {
616  // First read the node DOF values
617  for (const auto & node : ordered_nodes)
618  for (auto comp : make_range(node->n_comp(sys_num,var)))
619  {
620  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
622  libmesh_assert_less (cnt, io_buffer.size());
623  pos->second->set(node->dof_number(sys_num, var, comp), io_buffer[cnt++]);
624  }
625 
626  // Then read the element DOF values
627  for (const auto & elem : ordered_elements)
628  for (auto comp : make_range(elem->n_comp(sys_num,var)))
629  {
630  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
632  libmesh_assert_less (cnt, io_buffer.size());
633  pos->second->set(elem->dof_number(sys_num, var, comp), io_buffer[cnt++]);
634  }
635  }
636  }
637 
638  // Finally, read the SCALAR variables on the last processor
639  for (unsigned int data_var=0; data_var<nv; data_var++)
640  {
641  const unsigned int var = _written_var_indices[data_var];
642  if (this->variable(var).type().family == SCALAR)
643  {
644  if (this->processor_id() == (this->n_processors()-1))
645  {
646  const DofMap & dof_map = this->get_dof_map();
647  std::vector<dof_id_type> SCALAR_dofs;
648  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
649 
650  for (auto dof : SCALAR_dofs)
651  pos->second->set(dof, io_buffer[cnt++]);
652  }
653  }
654  }
655 
656  // And we're done setting entries for this variable
657  pos->second->close();
658  }
659 
660  // If we've got vectors then we need to be iterating through
661  // those too
662  if (pos != this->_vectors.end())
663  ++pos;
664  }
665  }
666 
667  // const Real
668  // dt = pl.get_elapsed_time(),
669  // rate = total_read_size*sizeof(Number)/dt;
670 
671  // libMesh::err << "Read " << total_read_size << " \"Number\" values\n"
672  // << " Elapsed time = " << dt << '\n'
673  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
674 
675  // pl.pop("read_parallel_data");
676 }
FEFamily family
The type of finite element.
Definition: fe_type.h:207
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
const MeshBase & get_mesh() const
Definition: system.h:2277
processor_id_type n_processors() const
unsigned int number() const
Definition: system.h:2269
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static const dof_id_type invalid_id
An invalid id to distinguish an uninitialized DofObject.
Definition: dof_object.h:477
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
std::vector< unsigned int > _written_var_indices
This vector is used only when reading in a system from file.
Definition: system.h:2235
uint8_t dof_id_type
Definition: id_types.h:67
const FEType & type() const
Definition: variable.h:140

◆ read_parallel_data() [2/2]

template LIBMESH_EXPORT void libMesh::System::read_parallel_data< Real > ( Xdr io,
const bool  read_additional_data 
)
inlineinherited

Non-templated version for backward compatibility.

Reads additional data, namely vectors, for this System. This method may safely be called on a distributed-memory mesh. This method will read an individual file for each processor in the simulation where the local solution components for that processor are stored.

Definition at line 1333 of file system.h.

1335  { read_parallel_data<Number>(io, read_additional_data); }

◆ read_parameter_data_from_files()

void libMesh::RBParametrized::read_parameter_data_from_files ( const std::string &  continuous_param_file_name,
const std::string &  discrete_param_file_name,
const bool  read_binary_data 
)
inherited

Read in the parameter ranges from files.

Definition at line 274 of file rb_parametrized.C.

References libMesh::RBParametrized::initialize_parameters(), libMesh::RBParametrized::read_discrete_parameter_values_from_file(), and libMesh::RBParametrized::read_parameter_ranges_from_file().

Referenced by libMesh::RBSCMEvaluation::legacy_read_offline_data_from_files(), and libMesh::RBEvaluation::legacy_read_offline_data_from_files().

277 {
278  RBParameters param_min;
279  RBParameters param_max;
280  read_parameter_ranges_from_file(continuous_param_file_name,
281  read_binary_data,
282  param_min,
283  param_max);
284 
285  std::map<std::string, std::vector<Real>> discrete_parameter_values_in;
286  read_discrete_parameter_values_from_file(discrete_param_file_name,
287  read_binary_data,
288  discrete_parameter_values_in);
289 
290  initialize_parameters(param_min, param_max, discrete_parameter_values_in);
291 }
void read_parameter_ranges_from_file(const std::string &file_name, const bool read_binary, RBParameters &param_min, RBParameters &param_max)
Read in the parameter ranges from file.
void read_discrete_parameter_values_from_file(const std::string &file_name, const bool read_binary_data, std::map< std::string, std::vector< Real >> &discrete_parameter_values_in)
Read in the discrete parameter values from file, if we have any.
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.

◆ read_riesz_representors_from_files()

void TransientRBConstruction::read_riesz_representors_from_files ( const std::string &  riesz_representors_dir,
const bool  write_binary_residual_representors 
)
overridevirtual

Write out all the Riesz representor data to files.

Override to read in transient data too.

Reimplemented from libMesh::RBConstruction.

Definition at line 1293 of file transient_rb_construction.C.

References libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::DECODE, libMesh::RBConstruction::get_rb_evaluation(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::out, libMesh::PARALLEL, libMesh::ParallelObject::processor_id(), libMesh::READ, libMesh::System::read_serialized_data(), and libMesh::System::solution.

1295 {
1296  LOG_SCOPE("read_riesz_representors_from_files()", "TransientRBConstruction");
1297 
1298  const std::string riesz_representor_suffix =
1299  (read_binary_residual_representors ? ".xdr" : ".dat");
1300 
1301  std::ostringstream file_name;
1302  struct stat stat_info;
1303 
1304  TransientRBEvaluation & trans_rb_eval = cast_ref<TransientRBEvaluation &>(get_rb_evaluation());
1305 
1306  libMesh::out << "Reading in the M_q_representors..." << std::endl;
1307 
1308  // Read in the Aq representors. The class makes room for [Q_m][Nmax] of these. We are going to
1309  // read in [Q_m][this->rb_eval->get_n_basis_functions()]. FIXME:
1310  // should we be worried about leaks in the locations where we're about to fill entries?
1311  for (std::size_t i=0; i<trans_rb_eval.M_q_representor.size(); ++i)
1312  for (std::size_t j=0; j<trans_rb_eval.M_q_representor[i].size(); ++j)
1313  libmesh_error_msg_if(trans_rb_eval.M_q_representor[i][j] != nullptr,
1314  "Error, must delete existing M_q_representor before reading in from file.");
1315 
1316  // Now ready to read them in from file!
1317  for (std::size_t i=0; i<trans_rb_eval.M_q_representor.size(); ++i)
1318  for (std::size_t j=0; j<trans_rb_eval.get_n_basis_functions(); ++j)
1319  {
1320  file_name.str(""); // reset filename
1321  file_name << riesz_representors_dir
1322  << "/M_q_representor" << i << "_" << j << riesz_representor_suffix;
1323 
1324  // On processor zero check to be sure the file exists
1325  if (this->processor_id() == 0)
1326  {
1327  int stat_result = stat(file_name.str().c_str(), &stat_info);
1328 
1329  libmesh_error_msg_if(stat_result != 0, "File does not exist: " << file_name.str());
1330  }
1331 
1332  Xdr aqr_data(file_name.str(),
1333  read_binary_residual_representors ? DECODE : READ);
1334 
1335  read_serialized_data(aqr_data, false);
1336 
1337  trans_rb_eval.M_q_representor[i][j] = NumericVector<Number>::build(this->comm());
1338  trans_rb_eval.M_q_representor[i][j]->init (n_dofs(), n_local_dofs(),
1339  false, PARALLEL);
1340 
1341  // No need to copy, just swap
1342  //*M_q_representor[i][j] = *solution;
1343  trans_rb_eval.M_q_representor[i][j]->swap(*solution);
1344  }
1345 }
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
OStreamProxy out
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
processor_id_type processor_id() const
void read_serialized_data(Xdr &io, const bool read_additional_data=true)
Reads additional data, namely vectors, for this System.
Definition: system_io.C:680

◆ read_serialized_data() [1/2]

template<typename InValType >
void libMesh::System::read_serialized_data ( Xdr io,
const bool  read_additional_data = true 
)
inherited

Reads additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh.

Definition at line 680 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_vectors, libMesh::ParallelObject::processor_id(), and libMesh::System::solution.

Referenced by initialize_truth(), read_riesz_representors_from_files(), and libMesh::RBConstruction::read_riesz_representors_from_files().

682 {
683  // This method implements the input of the vectors
684  // contained in this System object, embedded in the
685  // output of an EquationSystems<T_sys>.
686  //
687  // 10.) The global solution vector, re-ordered to be node-major
688  // (More on this later.)
689  //
690  // for each additional vector in the object
691  //
692  // 11.) The global additional vector, re-ordered to be
693  // node-major (More on this later.)
694  parallel_object_only();
695  std::string comment;
696 
697  // PerfLog pl("IO Performance",false);
698  // pl.push("read_serialized_data");
699  // std::size_t total_read_size = 0;
700 
701  // 10.)
702  // Read the global solution vector
703  {
704  // total_read_size +=
705  this->read_serialized_vector<InValType>(io, this->solution.get());
706 
707  // get the comment
708  if (this->processor_id() == 0)
709  io.comment (comment);
710  }
711 
712  // 11.)
713  // Only read additional vectors if data is available, and only use
714  // that data to fill our vectors if the user requested it.
715  if (this->_additional_data_written)
716  {
717  const std::size_t nvecs = this->_vectors.size();
718 
719  // If the number of additional vectors written is non-zero, and
720  // the number of additional vectors we have is non-zero, and
721  // they don't match, then we can't read additional vectors
722  // and be sure we're reading data into the correct places.
723  if (read_additional_data && nvecs &&
724  nvecs != this->_additional_data_written)
725  libmesh_error_msg
726  ("Additional vectors in file do not match system");
727 
728  auto pos = _vectors.begin();
729 
730  for (std::size_t i = 0; i != this->_additional_data_written; ++i)
731  {
732  // Read data, but only put it into a vector if we've been
733  // asked to and if we have a corresponding vector to read.
734 
735  // total_read_size +=
736  this->read_serialized_vector<InValType>
737  (io, (read_additional_data && nvecs) ? pos->second.get() : nullptr);
738 
739  // get the comment
740  if (this->processor_id() == 0)
741  io.comment (comment);
742 
743 
744  // If we've got vectors then we need to be iterating through
745  // those too
746  if (pos != this->_vectors.end())
747  ++pos;
748  }
749  }
750 
751  // const Real
752  // dt = pl.get_elapsed_time(),
753  // rate = total_read_size*sizeof(Number)/dt;
754 
755  // libMesh::out << "Read " << total_read_size << " \"Number\" values\n"
756  // << " Elapsed time = " << dt << '\n'
757  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
758 
759  // pl.pop("read_serialized_data");
760 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
processor_id_type processor_id() const

◆ read_serialized_data() [2/2]

template LIBMESH_EXPORT void libMesh::System::read_serialized_data< Real > ( Xdr io,
const bool  read_additional_data = true 
)
inlineinherited

Non-templated version for backward compatibility.

Reads additional data, namely vectors, for this System. This method may safely be called on a distributed-memory mesh.

Definition at line 1291 of file system.h.

1293  { read_serialized_data<Number>(io, read_additional_data); }

◆ read_serialized_vectors() [1/2]

template<typename InValType >
std::size_t libMesh::System::read_serialized_vectors ( Xdr io,
const std::vector< NumericVector< Number > *> &  vectors 
) const
inherited

Read a number of identically distributed vectors.

This method allows for optimization for the multiple vector case by only communicating the metadata once.

Definition at line 2165 of file system_io.C.

References libMesh::Xdr::data(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::MeshTools::n_elem(), libMesh::MeshBase::n_elem(), n_nodes, libMesh::MeshBase::n_nodes(), libMesh::System::n_vars(), libMesh::ParallelObject::processor_id(), libMesh::System::read_SCALAR_dofs(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::Xdr::reading(), libMesh::SCALAR, and libMesh::System::variable().

Referenced by libMesh::RBEvaluation::read_in_vectors_from_multiple_files().

2167 {
2168  parallel_object_only();
2169 
2170  // Error checking
2171  // #ifndef NDEBUG
2172  // // In parallel we better be reading a parallel vector -- if not
2173  // // we will not set all of its components below!!
2174  // if (this->n_processors() > 1)
2175  // {
2176  // libmesh_assert (vec.type() == PARALLEL ||
2177  // vec.type() == GHOSTED);
2178  // }
2179  // #endif
2180 
2181  libmesh_assert (io.reading());
2182 
2183  if (this->processor_id() == 0)
2184  {
2185  // sizes
2186  unsigned int num_vecs=0;
2187  dof_id_type vector_length=0;
2188 
2189  // Get the number of vectors
2190  io.data(num_vecs);
2191  // Get the buffer size
2192  io.data(vector_length);
2193 
2194  libmesh_error_msg_if (num_vecs != vectors.size(), "Unexpected value of num_vecs");
2195 
2196  if (num_vecs != 0)
2197  {
2198  libmesh_error_msg_if (vectors[0] == nullptr, "vectors[0] should not be null");
2199  libmesh_error_msg_if (vectors[0]->size() != vector_length, "Inconsistent vector sizes");
2200  }
2201  }
2202 
2203  // no need to actually communicate these.
2204  // this->comm().broadcast(num_vecs);
2205  // this->comm().broadcast(vector_length);
2206 
2207  // Cache these - they are not free!
2208  const dof_id_type
2209  n_nodes = this->get_mesh().n_nodes(),
2210  n_elem = this->get_mesh().n_elem();
2211 
2212  std::size_t read_length = 0;
2213 
2214  //---------------------------------
2215  // Collect the values for all nodes
2216  read_length +=
2217  this->read_serialized_blocked_dof_objects (n_nodes,
2218  this->get_mesh().local_nodes_begin(),
2219  this->get_mesh().local_nodes_end(),
2220  InValType(),
2221  io,
2222  vectors);
2223 
2224  //------------------------------------
2225  // Collect the values for all elements
2226  read_length +=
2228  this->get_mesh().local_elements_begin(),
2229  this->get_mesh().local_elements_end(),
2230  InValType(),
2231  io,
2232  vectors);
2233 
2234  //-------------------------------------------
2235  // Finally loop over all the SCALAR variables
2236  for (NumericVector<Number> * vec : vectors)
2237  for (auto var : make_range(this->n_vars()))
2238  if (this->variable(var).type().family == SCALAR)
2239  {
2240  libmesh_assert_not_equal_to (vec, 0);
2241 
2242  read_length +=
2243  this->read_SCALAR_dofs (var, io, vec);
2244  }
2245 
2246  //---------------------------------------
2247  // last step - must close all the vectors
2248  for (NumericVector<Number> * vec : vectors)
2249  {
2250  libmesh_assert_not_equal_to (vec, 0);
2251  vec->close();
2252  }
2253 
2254  return read_length;
2255 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
dof_id_type n_elem(const MeshBase::const_element_iterator &begin, const MeshBase::const_element_iterator &end)
Count up the number of elements of a specific type (as defined by an iterator range).
Definition: mesh_tools.C:850
std::size_t read_serialized_blocked_dof_objects(const dof_id_type n_objects, const iterator_type begin, const iterator_type end, const InValType dummy, Xdr &io, const std::vector< NumericVector< Number > *> &vecs, const unsigned int var_to_read=libMesh::invalid_uint) const
Reads an input vector from the stream io and assigns the values to a set of DofObjects.
Definition: system_io.C:765
const MeshBase & get_mesh() const
Definition: system.h:2277
const dof_id_type n_nodes
Definition: tecplot_io.C:67
libmesh_assert(ctx)
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int read_SCALAR_dofs(const unsigned int var, Xdr &io, NumericVector< Number > *vec) const
Reads the SCALAR dofs from the stream io and assigns the values to the appropriate entries of vec...
Definition: system_io.C:1089
unsigned int n_vars() const
Definition: system.h:2349
virtual dof_id_type n_elem() const =0
processor_id_type processor_id() const
template class LIBMESH_EXPORT NumericVector< Number >
virtual dof_id_type n_nodes() const =0
uint8_t dof_id_type
Definition: id_types.h:67

◆ read_serialized_vectors() [2/2]

template LIBMESH_EXPORT std::size_t libMesh::System::read_serialized_vectors< Real > ( Xdr io,
const std::vector< NumericVector< Number > *> &  vectors 
) const
inlineinherited

Non-templated version for backward compatibility.

Read a number of identically distributed vectors. This method allows for optimization for the multiple vector case by only communicating the metadata once.

Definition at line 1311 of file system.h.

1313  { return read_serialized_vectors<Number>(io, vectors); }

◆ recompute_all_residual_terms()

void libMesh::RBConstruction::recompute_all_residual_terms ( const bool  compute_inner_products = true)
virtualinherited

This function computes all of the residual representors, can be useful when restarting a basis training computation.

If compute_inner_products is false, we just compute the residual Riesz representors, whereas if true, we also compute all the corresponding inner product terms.

Definition at line 1761 of file rb_construction.C.

References libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::delta_N, libMesh::RBConstruction::Fq_representor_innerprods_computed, libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_rb_evaluation(), and libMesh::RBConstruction::update_residual_terms().

1762 {
1763  // Compute the basis independent terms
1765  compute_Fq_representor_innerprods(compute_inner_products);
1766 
1767  // and all the basis dependent terms
1768  unsigned int saved_delta_N = delta_N;
1770 
1771  update_residual_terms(compute_inner_products);
1772 
1773  delta_N = saved_delta_N;
1774 }
bool Fq_representor_innerprods_computed
A boolean flag to indicate whether or not the Fq representor norms have already been computed — used...
virtual void update_residual_terms(bool compute_inner_products=true)
Compute the terms that are combined ‘online’ to determine the dual norm of the residual.
unsigned int delta_N
The number of basis functions that we add at each greedy step.
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
virtual void compute_Fq_representor_innerprods(bool compute_inner_products=true)
Compute the terms that are combined ‘online’ to determine the dual norm of the residual.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ reinit()

void libMesh::LinearImplicitSystem::reinit ( )
overridevirtualinherited

Reinitializes the member data fields associated with the system, so that, e.g., assemble() may be used.

Reimplemented from libMesh::System.

Reimplemented in libMesh::NewmarkSystem.

Definition at line 82 of file linear_implicit_system.C.

References libMesh::ImplicitSystem::linear_solver, and libMesh::System::reinit().

Referenced by fe_assembly().

83 {
84  // re-initialize the linear solver interface
85  linear_solver->clear();
86 
87  // initialize parent data
89 }
virtual void reinit()
Reinitializes degrees of freedom and other required data on the current mesh.
Definition: system.C:446
std::unique_ptr< LinearSolver< Number > > linear_solver
This class handles all the details of interfacing with various linear algebra packages like PETSc or ...

◆ reinit_constraints()

void libMesh::System::reinit_constraints ( )
virtualinherited

Reinitializes the constraints for this system.

Definition at line 480 of file system.C.

References libMesh::System::_mesh, libMesh::DofMap::create_dof_constraints(), libMesh::System::get_dof_map(), libMesh::DofMap::prepare_send_list(), libMesh::DofMap::process_constraints(), libMesh::System::time, and libMesh::System::user_constrain().

Referenced by libMesh::EquationSystems::allgather(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::System::init_data(), and libMesh::EquationSystems::reinit_solutions().

481 {
482  parallel_object_only();
483 
484 #ifdef LIBMESH_ENABLE_CONSTRAINTS
486  user_constrain();
488 #endif
490 }
Real time
For time-dependent problems, this is the time t at the beginning of the current timestep.
Definition: system.h:1595
void process_constraints(MeshBase &)
Postprocesses any constrained degrees of freedom to be constrained only in terms of unconstrained dof...
void create_dof_constraints(const MeshBase &, Real time=0)
Rebuilds the raw degree of freedom and DofObject constraints, based on attached DirichletBoundary obj...
void prepare_send_list()
Takes the _send_list vector (which may have duplicate entries) and sorts it.
Definition: dof_map.C:1692
virtual void user_constrain()
Calls user&#39;s attached constraint function, or is overridden by the user in derived classes...
Definition: system.C:2273
const DofMap & get_dof_map() const
Definition: system.h:2293
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125

◆ reinit_mesh()

void libMesh::System::reinit_mesh ( )
virtualinherited

Reinitializes the system with a new mesh.

Definition at line 304 of file system.C.

References libMesh::System::_basic_system_only, libMesh::System::init_data(), libMesh::System::n_vars(), and libMesh::System::user_initialization().

305 {
306  parallel_object_only();
307 
308  // First initialize any required data:
309  // either only the basic System data
310  if (_basic_system_only)
312  // or all the derived class' data too
313  else
314  this->init_data();
315 
316  // If no variables have been added to this system
317  // don't do anything
318  if (!this->n_vars())
319  return;
320 
321  // Then call the user-provided initialization function
322  this->user_initialization();
323 
324 }
bool _basic_system_only
Holds true if the components of more advanced system types (e.g.
Definition: system.h:2204
virtual void init_data()
Initializes the data for the system.
Definition: system.C:216
virtual void user_initialization()
Calls user&#39;s attached initialization function, or is overridden by the user in derived classes...
Definition: system.C:2245
unsigned int n_vars() const
Definition: system.h:2349

◆ release_linear_solver()

void libMesh::ImplicitSystem::release_linear_solver ( LinearSolver< Number > *  ) const
virtualinherited

Currently a no-op.

Definition at line 1218 of file implicit_system.C.

1219 {
1220  // This function was originally paired with get_linear_solver()
1221  // calls when that returned a dumb pointer which needed to be
1222  // cleaned up. Since get_linear_solver() now just returns a pointer
1223  // to a LinearSolver object managed by this class, this function no
1224  // longer needs to do any cleanup.
1225  libmesh_deprecated();
1226 }

◆ remove_matrix()

void libMesh::System::remove_matrix ( std::string_view  mat_name)
inherited

Removes the additional matrix mat_name from this system.

Definition at line 1032 of file system.C.

References libMesh::System::_matrices.

1033 {
1034  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1035 
1036  matrices_iterator pos = _matrices.find(mat_name);
1037 
1038  // Return if the matrix does not exist
1039  if (pos == _matrices.end())
1040  return;
1041 
1042  _matrices.erase(pos); // erase()'d entries are destroyed
1043 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::iterator matrices_iterator
Matrix iterator typedefs.
Definition: system.h:1809
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ remove_vector()

void libMesh::System::remove_vector ( std::string_view  vec_name)
inherited

Removes the additional vector vec_name from this system.

Definition at line 846 of file system.C.

References libMesh::System::_vector_is_adjoint, libMesh::System::_vector_projections, libMesh::System::_vectors, and libMesh::libmesh_assert().

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), and libMesh::UnsteadySolver::integrate_adjoint_sensitivity().

847 {
848  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
849 
850  vectors_iterator pos = _vectors.find(vec_name);
851 
852  //Return if the vector does not exist
853  if (pos == _vectors.end())
854  return;
855 
856  _vectors.erase(pos);
857  auto proj_it = _vector_projections.find(vec_name);
858  libmesh_assert(proj_it != _vector_projections.end());
859  _vector_projections.erase(proj_it);
860 
861  auto adj_it = _vector_is_adjoint.find(vec_name);
862  libmesh_assert(adj_it != _vector_is_adjoint.end());
863  _vector_is_adjoint.erase(adj_it);
864 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::iterator vectors_iterator
Vector iterator typedefs.
Definition: system.h:766
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176
libmesh_assert(ctx)
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ request_matrix() [1/2]

const SparseMatrix< Number > * libMesh::System::request_matrix ( std::string_view  mat_name) const
inherited
Returns
A const pointer to this system's additional matrix named mat_name, or nullptr if no matrix by that name exists.

Definition at line 1047 of file system.C.

References libMesh::System::_matrices.

Referenced by libMesh::EigenSystem::has_matrix_A(), libMesh::EigenSystem::has_matrix_B(), libMesh::EigenSystem::has_precond_matrix(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::NewtonSolver::solve(), and libMesh::LinearImplicitSystem::solve().

1048 {
1049  // Make sure the matrix exists
1050  const_matrices_iterator pos = _matrices.find(mat_name);
1051 
1052  if (pos == _matrices.end())
1053  return nullptr;
1054 
1055  return pos->second.get();
1056 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::const_iterator const_matrices_iterator
Definition: system.h:1810
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ request_matrix() [2/2]

SparseMatrix< Number > * libMesh::System::request_matrix ( std::string_view  mat_name)
inherited
Returns
A writable pointer to this system's additional matrix named mat_name, or nullptr if no matrix by that name exists.

Definition at line 1060 of file system.C.

References libMesh::System::_matrices.

1061 {
1062  // Make sure the matrix exists
1063  matrices_iterator pos = _matrices.find(mat_name);
1064 
1065  if (pos == _matrices.end())
1066  return nullptr;
1067 
1068  return pos->second.get();
1069 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::iterator matrices_iterator
Matrix iterator typedefs.
Definition: system.h:1809
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ request_vector() [1/4]

const NumericVector< Number > * libMesh::System::request_vector ( std::string_view  vec_name) const
inherited
Returns
A const pointer to the vector if this System has a vector associated with the given name, nullptr otherwise.

Definition at line 866 of file system.C.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error().

867 {
868  const_vectors_iterator pos = _vectors.find(vec_name);
869 
870  if (pos == _vectors.end())
871  return nullptr;
872 
873  return pos->second.get();
874 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::const_iterator const_vectors_iterator
Definition: system.h:767

◆ request_vector() [2/4]

NumericVector< Number > * libMesh::System::request_vector ( std::string_view  vec_name)
inherited
Returns
A pointer to the vector if this System has a vector associated with the given name, nullptr otherwise.

Definition at line 878 of file system.C.

References libMesh::System::_vectors.

879 {
880  vectors_iterator pos = _vectors.find(vec_name);
881 
882  if (pos == _vectors.end())
883  return nullptr;
884 
885  return pos->second.get();
886 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::iterator vectors_iterator
Vector iterator typedefs.
Definition: system.h:766
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ request_vector() [3/4]

const NumericVector< Number > * libMesh::System::request_vector ( const unsigned int  vec_num) const
inherited
Returns
A const pointer to this system's additional vector number vec_num (where the vectors are counted starting with 0), or nullptr if the system has no such vector.

Definition at line 890 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

891 {
892  // If we don't have that many vectors, return nullptr
893  if (vec_num >= _vectors.size())
894  return nullptr;
895 
896  // Otherwise return a pointer to the vec_num'th vector
897  auto it = vectors_begin();
898  std::advance(it, vec_num);
899  return it->second.get();
900 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ request_vector() [4/4]

NumericVector< Number > * libMesh::System::request_vector ( const unsigned int  vec_num)
inherited
Returns
A writable pointer to this system's additional vector number vec_num (where the vectors are counted starting with 0), or nullptr if the system has no such vector.

Definition at line 904 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

905 {
906  // If we don't have that many vectors, return nullptr
907  if (vec_num >= _vectors.size())
908  return nullptr;
909 
910  // Otherwise return a pointer to the vec_num'th vector
911  auto it = vectors_begin();
912  std::advance(it, vec_num);
913  return it->second.get();
914 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ reset_preevaluate_thetas_completed()

void libMesh::RBConstruction::reset_preevaluate_thetas_completed ( )
protectedinherited

Reset the _preevaluate_thetas_completed flag to false.

We can use this to force us to recalculate preevaluate thetas, in cases where that is necessary.

Definition at line 2792 of file rb_construction.C.

References libMesh::RBConstruction::_preevaluate_thetas_completed.

2793 {
2795 }
bool _preevaluate_thetas_completed
Flag to indicate if the preevaluate_thetas function has been called, since this allows us to avoid ca...

◆ restrict_solve_to()

void libMesh::LinearImplicitSystem::restrict_solve_to ( const SystemSubset subset,
const SubsetSolveMode  subset_solve_mode = SUBSET_ZERO 
)
overridevirtualinherited

After calling this method, any solve will be limited to the given subset.

To disable this mode, call this method with subset being a nullptr.

Reimplemented from libMesh::System.

Definition at line 93 of file linear_implicit_system.C.

References libMesh::LinearImplicitSystem::_subset, libMesh::LinearImplicitSystem::_subset_solve_mode, and libMesh::SystemSubset::get_system().

Referenced by libMesh::LinearImplicitSystem::clear(), and main().

95 {
96  _subset = subset;
97  _subset_solve_mode = subset_solve_mode;
98 
99  if (subset != nullptr)
100  libmesh_assert_equal_to (&subset->get_system(), this);
101 }
SubsetSolveMode _subset_solve_mode
If restrict-solve-to-subset mode is active, this member decides what happens with the dofs outside th...
const SystemSubset * _subset
The current subset on which to solve (or nullptr if none).

◆ restrict_vectors()

void libMesh::System::restrict_vectors ( )
virtualinherited

Restrict vectors after the mesh has coarsened.

Definition at line 378 of file system.C.

References libMesh::System::_dof_map, libMesh::System::_solution_projection, libMesh::System::_vector_projections, libMesh::System::_vectors, libMesh::System::current_local_solution, libMesh::NumericVector< T >::get(), libMesh::GHOSTED, libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, libMesh::System::project_vector(), libMesh::System::solution, and libMesh::System::vector_is_adjoint().

Referenced by libMesh::System::prolong_vectors(), and libMesh::EquationSystems::reinit_solutions().

379 {
380  parallel_object_only();
381 
382 #ifdef LIBMESH_ENABLE_AMR
383  // Restrict the _vectors on the coarsened cells
384  for (auto & [vec_name, vec] : _vectors)
385  {
386  NumericVector<Number> * v = vec.get();
387 
388  if (_vector_projections[vec_name])
389  {
390  this->project_vector (*v, this->vector_is_adjoint(vec_name));
391  }
392  else
393  {
394  const ParallelType type = vec->type();
395 
396  if (type == GHOSTED)
397  {
398 #ifdef LIBMESH_ENABLE_GHOSTED
399  vec->init (this->n_dofs(), this->n_local_dofs(),
400  _dof_map->get_send_list(), /*fast=*/false,
401  GHOSTED);
402 #else
403  libmesh_error_msg("Cannot initialize ghosted vectors when they are not enabled.");
404 #endif
405  }
406  else
407  vec->init (this->n_dofs(), this->n_local_dofs(), false, type);
408  }
409  }
410 
411  const std::vector<dof_id_type> & send_list = _dof_map->get_send_list ();
412 
413  // Restrict the solution on the coarsened cells
415  this->project_vector (*solution);
416  // Or at least make sure the solution vector is the correct size
417  else
418  solution->init (this->n_dofs(), this->n_local_dofs(), true, PARALLEL);
419 
420 #ifdef LIBMESH_ENABLE_GHOSTED
421  current_local_solution->init(this->n_dofs(),
422  this->n_local_dofs(), send_list,
423  false, GHOSTED);
424 #else
425  current_local_solution->init(this->n_dofs());
426 #endif
427 
429  solution->localize (*current_local_solution, send_list);
430 
431 #endif // LIBMESH_ENABLE_AMR
432 }
int vector_is_adjoint(std::string_view vec_name) const
Definition: system.C:1120
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
bool _solution_projection
Holds true if the solution vector should be projected onto a changed grid, false if it should be zero...
Definition: system.h:2198
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...
template class LIBMESH_EXPORT NumericVector< Number >
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170
ParallelType
Defines an enum for parallel data structure types.

◆ sensitivity_solve()

std::pair< unsigned int, Real > libMesh::ImplicitSystem::sensitivity_solve ( const ParameterVector parameters)
overridevirtualinherited

Assembles & solves the linear system(s) (dR/du)*u_p = -dR/dp, for those parameters contained within parameters.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

Reimplemented from libMesh::System.

Definition at line 113 of file implicit_system.C.

References libMesh::System::add_sensitivity_solution(), libMesh::System::assemble_before_solve, libMesh::ImplicitSystem::assemble_residual_derivatives(), libMesh::ImplicitSystem::assembly(), libMesh::SparseMatrix< T >::close(), libMesh::DofMap::enforce_constraints_exactly(), libMesh::System::get_dof_map(), libMesh::ImplicitSystem::get_linear_solve_parameters(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::System::get_sensitivity_rhs(), libMesh::System::get_sensitivity_solution(), libMesh::make_range(), libMesh::ImplicitSystem::matrix, libMesh::System::request_matrix(), libMesh::ParameterVector::size(), and libMesh::LinearSolver< T >::solve().

Referenced by libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), and libMesh::ImplicitSystem::qoi_parameter_hessian().

114 {
115  // Log how long the linear solve takes.
116  LOG_SCOPE("sensitivity_solve()", "ImplicitSystem");
117 
118  // The forward system should now already be solved.
119  // Now assemble the corresponding sensitivity system.
120 
121  if (this->assemble_before_solve)
122  {
123  // Build the Jacobian
124  this->assembly(false, true);
125  this->matrix->close();
126 
127  // Reset and build the RHS from the residual derivatives
128  this->assemble_residual_derivatives(parameters);
129  }
130 
131  // The sensitivity problem is linear
132  LinearSolver<Number> * solver = this->get_linear_solver();
133 
134  // Our iteration counts and residuals will be sums of the individual
135  // results
136  std::pair<unsigned int, Real> solver_params =
138  std::pair<unsigned int, Real> totalrval = std::make_pair(0,0.0);
139 
140  // Solve the linear system.
141  SparseMatrix<Number> * pc = this->request_matrix("Preconditioner");
142  for (auto p : make_range(parameters.size()))
143  {
144  std::pair<unsigned int, Real> rval =
145  solver->solve (*matrix, pc,
146  this->add_sensitivity_solution(p),
147  this->get_sensitivity_rhs(p),
148  double(solver_params.second),
149  solver_params.first);
150 
151  totalrval.first += rval.first;
152  totalrval.second += rval.second;
153  }
154 
155  // The linear solver may not have fit our constraints exactly
156 #ifdef LIBMESH_ENABLE_CONSTRAINTS
157  for (auto p : make_range(parameters.size()))
159  (*this, &this->get_sensitivity_solution(p),
160  /* homogeneous = */ true);
161 #endif
162 
163  return totalrval;
164 }
virtual std::pair< unsigned int, Real > get_linear_solve_parameters() const
NumericVector< Number > & get_sensitivity_solution(unsigned int i=0)
Definition: system.C:1140
NumericVector< Number > & get_sensitivity_rhs(unsigned int i=0)
Definition: system.C:1285
virtual LinearSolver< Number > * get_linear_solver() const
const SparseMatrix< Number > * request_matrix(std::string_view mat_name) const
Definition: system.C:1047
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
template class LIBMESH_EXPORT LinearSolver< Number >
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
template class LIBMESH_EXPORT SparseMatrix< Number >
SparseMatrix< Number > * matrix
The system matrix.
virtual void assemble_residual_derivatives(const ParameterVector &parameters) override
Residual parameter derivative function.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
NumericVector< Number > & add_sensitivity_solution(unsigned int i=0)
Definition: system.C:1130
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1527
const DofMap & get_dof_map() const
Definition: system.h:2293
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274

◆ set_abs_training_tolerance()

void libMesh::RBConstruction::set_abs_training_tolerance ( Real  new_training_tolerance)
inlineinherited

Get/set the absolute tolerance for the basis training.

Definition at line 225 of file rb_construction.h.

References libMesh::RBConstruction::abs_training_tolerance.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

226  {this->abs_training_tolerance = new_training_tolerance; }

◆ set_adjoint_already_solved()

void libMesh::System::set_adjoint_already_solved ( bool  setting)
inlineinherited

Setter for the adjoint_already_solved boolean.

Definition at line 412 of file system.h.

References libMesh::System::adjoint_already_solved.

Referenced by main().

413  { adjoint_already_solved = setting;}
bool adjoint_already_solved
Has the adjoint problem already been solved? If the user sets adjoint_already_solved to true...
Definition: system.h:2242

◆ set_basic_system_only()

void libMesh::System::set_basic_system_only ( )
inlineinherited

Sets the system to be "basic only": i.e.

advanced system components such as ImplicitSystem matrices may not be initialized. This is useful for efficiency in certain utility programs that never use System::solve(). This method must be called after the System or derived class is created but before it is initialized; e.g. from within EquationSystems::read()

Definition at line 2341 of file system.h.

References libMesh::System::_basic_system_only.

Referenced by libMesh::EquationSystems::read().

2342 {
2343  _basic_system_only = true;
2344 }
bool _basic_system_only
Holds true if the components of more advanced system types (e.g.
Definition: system.h:2204

◆ set_context_solution_vec()

void libMesh::RBConstruction::set_context_solution_vec ( NumericVector< Number > &  vec)
protectedvirtualinherited

Set current_local_solution = vec so that we can access vec from FEMContext during assembly.

Override in subclasses if different behavior is required.

Definition at line 939 of file rb_construction.C.

References libMesh::System::current_local_solution, libMesh::System::get_dof_map(), and libMesh::NumericVector< T >::localize().

940 {
941  // Set current_local_solution = vec so that we can access
942  // vec from DGFEMContext during assembly
943  vec.localize
944  (*current_local_solution, this->get_dof_map().get_send_list());
945 }
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
const DofMap & get_dof_map() const
Definition: system.h:2293
virtual void localize(std::vector< T > &v_local) const =0
Creates a copy of the global vector in the local vector v_local.

◆ set_control()

void libMesh::RBTemporalDiscretization::set_control ( const std::vector< Real > &  control)
inherited

Definition at line 85 of file rb_temporal_discretization.C.

References libMesh::RBTemporalDiscretization::_control, and libMesh::RBTemporalDiscretization::_n_time_steps.

Referenced by libMesh::RBTemporalDiscretization::pull_temporal_discretization_data().

86 {
87  libmesh_assert_less_equal(control.size(),_n_time_steps+1);
88  _control = control;
89  // If the input vector is smaller than the number of time steps (+1), we complete it with zeros
90  _control.resize(_n_time_steps+1);
91 }
std::vector< Real > _control
The RHS control (scalar function of time).
unsigned int _n_time_steps
The number of time-steps.

◆ set_convergence_assertion_flag()

void libMesh::RBConstruction::set_convergence_assertion_flag ( bool  flag)
inherited

Setter for the flag determining if convergence should be checked after each solve.

Definition at line 2677 of file rb_construction.C.

References libMesh::RBConstruction::assert_convergence.

2678 {
2679  assert_convergence = flag;
2680 }
bool assert_convergence
A boolean flag to indicate whether to check for proper convergence after each solve.

◆ set_current_training_parameter_index()

void libMesh::RBConstruction::set_current_training_parameter_index ( unsigned int  index)
protectedinherited

Definition at line 2697 of file rb_construction.C.

References libMesh::RBConstruction::_current_training_parameter_index.

Referenced by libMesh::RBConstruction::compute_max_error_bound().

2698 {
2700 }
unsigned int _current_training_parameter_index
The current training parameter index during reduced basis training.

◆ set_delta_N()

void libMesh::TransientRBConstruction::set_delta_N ( const unsigned int  new_delta_N)
inline

Set delta_N, the number of basis functions we add to the RB space from each POD.

Definition at line 227 of file transient_rb_construction.h.

References libMesh::RBConstruction::delta_N.

Referenced by add_IC_to_RB_space(), enrich_RB_space(), and process_parameters_file().

227 { this->delta_N = new_delta_N; }
unsigned int delta_N
The number of basis functions that we add at each greedy step.

◆ set_delta_t()

void libMesh::RBTemporalDiscretization::set_delta_t ( const Real  delta_t_in)
inherited

◆ set_deterministic_training_parameter_name()

void libMesh::RBConstructionBase< LinearImplicitSystem >::set_deterministic_training_parameter_name ( const std::string &  name)
inherited

In some cases we only want to allow discrete parameter values, instead of parameters that may take any value in a specified interval.

Here we provide a method to set the d Set the discrete values for parameter mu that are allowed in the training set. This must be called before the training set is generated. Set the name of the parameter that we will generate deterministic training parameters for. Defaults to "NONE".

◆ set_energy_inner_product()

void libMesh::RBConstruction::set_energy_inner_product ( const std::vector< Number > &  energy_inner_product_coeffs_in)
inherited

Specify the coefficients of the A_q operators to be used in the energy inner-product.

Definition at line 421 of file rb_construction.C.

References libMesh::RBConstruction::energy_inner_product_coeffs, and libMesh::RBConstruction::use_energy_inner_product.

422 {
424  energy_inner_product_coeffs = energy_inner_product_coeffs_in;
425 }
std::vector< Number > energy_inner_product_coeffs
We may optionally want to use the "energy inner-product" rather than the inner-product assembly speci...
bool use_energy_inner_product
Boolean to indicate whether we&#39;re using the energy inner-product.

◆ set_error_temporal_data()

Number TransientRBConstruction::set_error_temporal_data ( )
protected

Set column k (i.e.

the current time level) of temporal_data to the difference between the current solution and the orthogonal projection of the current solution onto the current RB space.

Definition at line 629 of file transient_rb_construction.C.

References libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::DenseVector< T >::dot(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBTemporalDiscretization::get_time_step(), libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::DenseMatrix< T >::lu_solve(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, libMesh::RBEvaluation::RB_inner_product_matrix, libMesh::System::solution, temporal_data, and libMesh::SparseMatrix< T >::vector_mult().

Referenced by truth_solve().

630 {
631  LOG_SCOPE("set_error_temporal_data()", "TransientRBConstruction");
632 
633  // first compute the projection of solution onto the current
634  // RB space
635 
636  const unsigned int time_step = get_time_step();
637 
638  if (get_rb_evaluation().get_n_basis_functions() == 0)
639  {
640  // If the basis is empty, then the error is the solution itself
641  temporal_data[time_step]->zero();
642  temporal_data[time_step]->add(1., *solution);
643  }
644  else
645  {
646  unsigned int RB_size = get_rb_evaluation().get_n_basis_functions();
647 
648  std::unique_ptr<NumericVector<Number>> temp = NumericVector<Number>::build(this->comm());
649  temp->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
650 
651  // First compute the right-hand side vector for the projection
653 
654  // zero_dirichlet_dofs_on_vector(*temp);
655 
656  // Do not assume that RB_stiffness matrix is diagonal,
657  // diagonality degrades as N increases
658 
659  // Get an appropriately sized copy of RB_inner_product_matrix
660  DenseMatrix<Number> RB_inner_product_matrix_N(RB_size,RB_size);
661  for (unsigned int i=0; i<RB_size; i++)
662  for (unsigned int j=0; j<RB_size; j++)
663  {
664  RB_inner_product_matrix_N(i,j) = get_rb_evaluation().RB_inner_product_matrix(i,j);
665  }
666 
667  // Compute the projection RHS
668  DenseVector<Number> RB_proj_rhs(RB_size);
669  for (unsigned int i=0; i<RB_size; i++)
670  {
671  RB_proj_rhs(i) = temp->dot(get_rb_evaluation().get_basis_function(i));
672  }
673 
674  DenseVector<Number> RB_proj(RB_size);
675 
676  // Now solve the linear system
677  RB_inner_product_matrix_N.lu_solve(RB_proj_rhs, RB_proj);
678 
679  // Load the RB projection into temp
680  temp->zero();
681  for (unsigned int i=0; i<RB_size; i++)
682  {
683  temp->add(RB_proj(i), get_rb_evaluation().get_basis_function(i));
684  }
685 
686  temp->add(-1., *solution);
687 
688  // Now temp holds the projection error, store in temporal_data
689  *(temporal_data[time_step]) = *temp;
690  }
691 
692  // return the square of the X norm of the truth solution
694 
696 }
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
DenseMatrix< Number > RB_inner_product_matrix
The inner product matrix.
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
unsigned int get_time_step() const
Get/set the current time-step.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
std::vector< std::unique_ptr< NumericVector< Number > > > temporal_data
Dense matrix to store the data that we use for the temporal POD.
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ set_euler_theta()

void libMesh::RBTemporalDiscretization::set_euler_theta ( const Real  euler_theta_in)
inherited

◆ set_inner_product_assembly()

void libMesh::RBConstruction::set_inner_product_assembly ( ElemAssembly inner_product_assembly_in)
inherited

Set the rb_assembly_expansion object.

Definition at line 404 of file rb_construction.C.

References libMesh::RBConstruction::inner_product_assembly, and libMesh::RBConstruction::use_energy_inner_product.

Referenced by SimpleRBConstruction::init_data().

405 {
406  use_energy_inner_product = false;
407  inner_product_assembly = &inner_product_assembly_in;
408 }
bool use_energy_inner_product
Boolean to indicate whether we&#39;re using the energy inner-product.
ElemAssembly * inner_product_assembly
Pointer to inner product assembly.

◆ set_L2_assembly()

void TransientRBConstruction::set_L2_assembly ( ElemAssembly L2_assembly_in)

Set the L2 object.

Definition at line 453 of file transient_rb_construction.C.

References L2_assembly.

454 {
455  L2_assembly = &L2_assembly_in;
456 }
ElemAssembly * L2_assembly
Function pointer for assembling the L2 matrix.

◆ set_max_truth_solves()

void libMesh::TransientRBConstruction::set_max_truth_solves ( int  max_truth_solves_in)
inline

Definition at line 215 of file transient_rb_construction.h.

References max_truth_solves.

Referenced by process_parameters_file().

215 { this->max_truth_solves = max_truth_solves_in; }
int max_truth_solves
Maximum number of truth solves in the POD-Greedy.

◆ set_n_time_steps()

void libMesh::RBTemporalDiscretization::set_n_time_steps ( const unsigned int  K)
inherited

◆ set_Nmax()

void libMesh::RBConstruction::set_Nmax ( unsigned int  Nmax)
virtualinherited

Definition at line 1646 of file rb_construction.C.

References libMesh::RBConstruction::Nmax.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

1647 {
1648  this->Nmax = Nmax_in;
1649 }
unsigned int Nmax
Maximum number of reduced basis functions we are willing to use.

◆ set_normalize_rb_bound_in_greedy()

void libMesh::RBConstruction::set_normalize_rb_bound_in_greedy ( bool  normalize_rb_bound_in_greedy_in)
inlineinherited

Get/set the boolean to indicate if we normalize the RB error in the greedy.

Definition at line 232 of file rb_construction.h.

References libMesh::RBConstruction::normalize_rb_bound_in_greedy.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

233  {this->normalize_rb_bound_in_greedy = normalize_rb_bound_in_greedy_in; }
bool normalize_rb_bound_in_greedy
This boolean indicates if we normalize the RB error in the greedy using RBEvaluation::get_error_bound...

◆ set_parameters()

bool libMesh::RBParametrized::set_parameters ( const RBParameters params)
inherited

Set the current parameters to params The parameters are checked for validity; an error is thrown if the number of parameters or samples is different than expected.

We

Returns
a boolean true if the new parameters are within the min/max range, and false otherwise (but the parameters are set regardless). Enabling the "verbose_mode" flag will also print more details.

Definition at line 141 of file rb_parametrized.C.

References libMesh::RBParametrized::check_if_valid_params(), libMesh::RBParametrized::parameters, and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBSCMConstruction::compute_SCM_bounds_on_training_set(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_nodes(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), libMesh::RBConstruction::get_RB_error_bound(), SimpleRBEvaluation::get_stability_lower_bound(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBSCMEvaluation::reload_current_parameters(), libMesh::RBSCMEvaluation::set_current_parameters_from_C_J(), and RBParametersTest::testRBParametrized().

142 {
143  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::set_parameters");
144 
145  // Terminate if params has the wrong number of parameters or samples.
146  // If the parameters are outside the min/max range, return false.
147  const bool valid_params = check_if_valid_params(params);
148 
149  // Make a copy of params (default assignment operator just does memberwise copy, which is sufficient here)
150  this->parameters = params;
151 
152  return valid_params;
153 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
bool check_if_valid_params(const RBParameters &params) const
Helper function to check that params is valid:
RBParameters parameters
Vector storing the current parameters.

◆ set_params_from_training_set()

void libMesh::RBConstructionBase< LinearImplicitSystem >::set_params_from_training_set ( unsigned int  global_index)
protectedinherited

Set parameters to the RBParameters stored in index global_index of the global training set.

Definition at line 218 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBConstruction::preevaluate_thetas(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

219 {
221 }
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
RBParameters get_params_from_training_set(unsigned int global_index)
Return the RBParameters in index global_index of the global training set.

◆ set_params_from_training_set_and_broadcast()

void libMesh::RBConstructionBase< LinearImplicitSystem >::set_params_from_training_set_and_broadcast ( unsigned int  global_index)
protectedvirtualinherited

Load the specified training parameter and then broadcast to all processors.

Definition at line 263 of file rb_construction_base.C.

264 {
265  libmesh_error_msg_if(!_training_parameters_initialized,
266  "Error: training parameters must first be initialized.");
267 
268  processor_id_type root_id = 0;
269  if ((this->get_first_local_training_index() <= global_index) &&
270  (global_index < this->get_last_local_training_index()))
271  {
272  // Set parameters on only one processor
273  set_params_from_training_set(global_index);
274 
275  // set root_id, only non-zero on one processor
276  root_id = this->processor_id();
277  }
278 
279  // broadcast
280  this->comm().max(root_id);
281  broadcast_parameters(root_id);
282 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
const Parallel::Communicator & comm() const
void broadcast_parameters(const unsigned int proc_id)
Broadcasts parameters from processor proc_id to all processors.
uint8_t processor_id_type
numeric_index_type get_last_local_training_index() const
Get the last local index of the training parameters.
void set_params_from_training_set(unsigned int global_index)
Set parameters to the RBParameters stored in index global_index of the global training set...
void max(const T &r, T &o, Request &req) const
processor_id_type processor_id() const
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ set_POD_tol()

void libMesh::TransientRBConstruction::set_POD_tol ( const Real  POD_tol_in)
inline

Definition at line 221 of file transient_rb_construction.h.

References POD_tol.

Referenced by process_parameters_file().

221 { this->POD_tol = POD_tol_in; }
Real POD_tol
If positive, this tolerance determines the number of POD modes we add to the space on a call to enric...

◆ set_preevaluate_thetas_flag()

void libMesh::RBConstruction::set_preevaluate_thetas_flag ( bool  flag)
inherited

Definition at line 2687 of file rb_construction.C.

References libMesh::RBConstruction::_preevaluate_thetas_flag.

2688 {
2689  _preevaluate_thetas_flag = flag;
2690 }
bool _preevaluate_thetas_flag
Flag to indicate if we preevaluate the theta functions.

◆ set_project_with_constraints()

void libMesh::System::set_project_with_constraints ( bool  _project_with_constraints)
inlineinherited

Definition at line 1780 of file system.h.

References libMesh::System::project_with_constraints.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error().

1781  {
1782  project_with_constraints = _project_with_constraints;
1783  }
bool project_with_constraints
Do we want to apply constraints while projecting vectors ?
Definition: system.h:2253

◆ set_qoi() [1/2]

void libMesh::System::set_qoi ( unsigned int  qoi_index,
Number  qoi_value 
)
inherited

Definition at line 2326 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::qoi.

Referenced by libMesh::ExplicitSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::TwostepTimeSolver::integrate_qoi_timestep(), and libMesh::EulerSolver::integrate_qoi_timestep().

2327 {
2328  libmesh_assert(qoi_index < qoi.size());
2329 
2330  qoi[qoi_index] = qoi_value;
2331 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611
libmesh_assert(ctx)

◆ set_qoi() [2/2]

void libMesh::System::set_qoi ( std::vector< Number new_qoi)
inherited

Definition at line 2347 of file system.C.

References libMesh::System::qoi.

2348 {
2349  libmesh_assert_equal_to(this->qoi.size(), new_qoi.size());
2350  this->qoi = std::move(new_qoi);
2351 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611

◆ set_qoi_error_estimate()

void libMesh::System::set_qoi_error_estimate ( unsigned int  qoi_index,
Number  qoi_error_estimate 
)
inherited

Definition at line 2354 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::qoi_error_estimates.

Referenced by libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), and libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate().

2355 {
2356  libmesh_assert(qoi_index < qoi_error_estimates.size());
2357 
2358  qoi_error_estimates[qoi_index] = qoi_error_estimate;
2359 }
libmesh_assert(ctx)
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ set_quiet_mode()

void libMesh::RBConstructionBase< LinearImplicitSystem >::set_quiet_mode ( bool  quiet_mode_in)
inlineinherited

Set the quiet_mode flag.

If quiet == false then we print out a lot of extra information during the Offline stage.

Definition at line 100 of file rb_construction_base.h.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

101  { this->quiet_mode = quiet_mode_in; }
bool quiet_mode
Flag to indicate whether we print out extra information during the Offline stage. ...

◆ set_rb_assembly_expansion()

void libMesh::RBConstruction::set_rb_assembly_expansion ( RBAssemblyExpansion rb_assembly_expansion_in)
inherited

Set the rb_assembly_expansion object.

Definition at line 392 of file rb_construction.C.

References libMesh::RBConstruction::rb_assembly_expansion.

Referenced by SimpleRBConstruction::init_data().

393 {
394  rb_assembly_expansion = &rb_assembly_expansion_in;
395 }
RBAssemblyExpansion * rb_assembly_expansion
This member holds the (parameter independent) assembly functors that define the "affine expansion" of...

◆ set_rb_construction_parameters()

void libMesh::RBConstruction::set_rb_construction_parameters ( unsigned int  n_training_samples_in,
bool  deterministic_training_in,
int  training_parameters_random_seed_in,
bool  quiet_mode_in,
unsigned int  Nmax_in,
Real  rel_training_tolerance_in,
Real  abs_training_tolerance_in,
bool  normalize_rb_error_bound_in_greedy_in,
const std::string &  RB_training_type_in,
const RBParameters mu_min_in,
const RBParameters mu_max_in,
const std::map< std::string, std::vector< Real >> &  discrete_parameter_values_in,
const std::map< std::string, bool > &  log_scaling,
std::map< std::string, std::vector< RBParameter >> *  training_sample_list = nullptr 
)
inherited

Set the state of this RBConstruction object based on the arguments to this function.

Definition at line 286 of file rb_construction.C.

References libMesh::RBParametrized::get_parameters_max(), libMesh::RBParametrized::get_parameters_min(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBConstructionBase< LinearImplicitSystem >::initialize_training_parameters(), libMesh::RBConstructionBase< LinearImplicitSystem >::load_training_set(), libMesh::RBConstruction::set_abs_training_tolerance(), libMesh::RBConstruction::set_Nmax(), libMesh::RBConstruction::set_normalize_rb_bound_in_greedy(), libMesh::RBConstructionBase< LinearImplicitSystem >::set_quiet_mode(), libMesh::RBConstruction::set_RB_training_type(), libMesh::RBConstruction::set_rel_training_tolerance(), and libMesh::RBConstructionBase< LinearImplicitSystem >::set_training_random_seed().

Referenced by libMesh::RBConstruction::process_parameters_file().

301 {
302  // Read in training_parameters_random_seed value. This is used to
303  // seed the RNG when picking the training parameters. By default the
304  // value is -1, which means use std::time to seed the RNG.
305  set_training_random_seed(training_parameters_random_seed_in);
306 
307  // Set quiet mode
308  set_quiet_mode(quiet_mode_in);
309 
310  // Initialize RB parameters
311  set_Nmax(Nmax_in);
312 
313  set_rel_training_tolerance(rel_training_tolerance_in);
314  set_abs_training_tolerance(abs_training_tolerance_in);
315 
316  set_normalize_rb_bound_in_greedy(normalize_rb_bound_in_greedy_in);
317 
318  set_RB_training_type(RB_training_type_in);
319 
320  // Initialize the parameter ranges and the parameters themselves
321  initialize_parameters(mu_min_in, mu_max_in, discrete_parameter_values_in);
322 
324  this->get_parameters_max(),
325  n_training_samples_in,
326  log_scaling_in,
327  deterministic_training_in); // use deterministic parameters
328 
329  if (training_sample_list)
330  {
331  // Note that we must call initialize_training_parameters() before
332  // load_training_set() in order to initialize the parameter vectors.
333  load_training_set(*training_sample_list);
334  }
335 }
void set_RB_training_type(const std::string &RB_training_type_in)
Get/set the string that determines the training type.
const RBParameters & get_parameters_max() const
Get an RBParameters object that specifies the maximum allowable value for each parameter.
void set_quiet_mode(bool quiet_mode_in)
Set the quiet_mode flag.
virtual void load_training_set(const std::map< std::string, std::vector< RBParameter >> &new_training_set)
Overwrite the training parameters with new_training_set.
virtual void initialize_training_parameters(const RBParameters &mu_min, const RBParameters &mu_max, const unsigned int n_global_training_samples, const std::map< std::string, bool > &log_param_scale, const bool deterministic=true)
Initialize the parameter ranges and indicate whether deterministic or random training parameters shou...
void set_training_random_seed(int seed)
Set the seed that is used to randomly generate training parameters.
const RBParameters & get_parameters_min() const
Get an RBParameters object that specifies the minimum allowable value for each parameter.
void set_abs_training_tolerance(Real new_training_tolerance)
Get/set the absolute tolerance for the basis training.
void set_normalize_rb_bound_in_greedy(bool normalize_rb_bound_in_greedy_in)
Get/set the boolean to indicate if we normalize the RB error in the greedy.
virtual void set_Nmax(unsigned int Nmax)
void set_rel_training_tolerance(Real new_training_tolerance)
Get/set the relative tolerance for the basis training.
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.

◆ set_rb_evaluation()

void libMesh::RBConstruction::set_rb_evaluation ( RBEvaluation rb_eval_in)
inherited

Set the RBEvaluation object.

Definition at line 170 of file rb_construction.C.

References libMesh::RBConstruction::rb_eval.

Referenced by main().

171 {
172  rb_eval = &rb_eval_in;
173 }
RBEvaluation * rb_eval
The current RBEvaluation object we are using to perform the Evaluation stage of the reduced basis met...

◆ set_RB_training_type()

void libMesh::RBConstruction::set_RB_training_type ( const std::string &  RB_training_type_in)
inherited

Get/set the string that determines the training type.

Definition at line 1629 of file rb_construction.C.

References libMesh::RBConstruction::RB_training_type, and libMesh::RBConstructionBase< LinearImplicitSystem >::serial_training_set.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

1630 {
1631  this->RB_training_type = RB_training_type_in;
1632 
1633  if(this->RB_training_type == "POD")
1634  {
1635  // We need to use a serial training set (so that the training
1636  // set is the same on all processes) if we're using POD
1637  this->serial_training_set = true;
1638  }
1639 }
std::string RB_training_type
This string indicates the type of training that we will use.
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...

◆ set_rel_training_tolerance()

void libMesh::RBConstruction::set_rel_training_tolerance ( Real  new_training_tolerance)
inlineinherited

Get/set the relative tolerance for the basis training.

Definition at line 218 of file rb_construction.h.

References libMesh::RBConstruction::rel_training_tolerance.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

219  {this->rel_training_tolerance = new_training_tolerance; }
Real rel_training_tolerance
Relative and absolute tolerances for training reduced basis using the Greedy scheme.

◆ set_time_step()

void libMesh::RBTemporalDiscretization::set_time_step ( const unsigned int  k)
inherited

◆ set_training_parameter_values()

void libMesh::RBConstructionBase< LinearImplicitSystem >::set_training_parameter_values ( const std::string &  param_name,
const std::vector< RBParameter > &  values 
)
inherited

Overwrite the local training samples for param_name using values.

This assumes that values.size() matches get_local_n_training_samples().

Definition at line 448 of file rb_construction_base.C.

450 {
451  libmesh_error_msg_if(!_training_parameters_initialized,
452  "Training parameters must be initialized before calling set_training_parameter_values");
453  libmesh_error_msg_if(values.size() != get_local_n_training_samples(),
454  "Inconsistent sizes");
455 
456  // Copy the new data, overwriting the old data.
457  auto & training_vector = libmesh_map_find(_training_parameters, param_name);
458  training_vector = values;
459 }
numeric_index_type get_local_n_training_samples() const
Get the total number of training samples local to this processor.
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ set_training_random_seed()

void libMesh::RBConstructionBase< LinearImplicitSystem >::set_training_random_seed ( int  seed)
inherited

Set the seed that is used to randomly generate training parameters.

Definition at line 772 of file rb_construction_base.C.

Referenced by libMesh::RBConstruction::set_rb_construction_parameters().

773 {
775 }
int _training_parameters_random_seed
If < 0, use std::time() * processor_id() to seed the random number generator for the training paramet...

◆ set_vector_as_adjoint()

void libMesh::System::set_vector_as_adjoint ( const std::string &  vec_name,
int  qoi_num 
)
inherited

Allows one to set the QoI index controlling whether the vector identified by vec_name represents a solution from the adjoint (qoi_num >= 0) or primal (qoi_num == -1) space.

This becomes significant if those spaces have differing heterogeneous Dirichlet constraints.

qoi_num == -2 can be used to indicate a vector which should not be affected by constraints during projection operations.

Definition at line 1107 of file system.C.

References libMesh::System::_vector_is_adjoint.

Referenced by libMesh::System::add_adjoint_solution(), and libMesh::System::add_weighted_sensitivity_adjoint_solution().

1109 {
1110  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1111 
1112  // We reserve -1 for vectors which get primal constraints, -2 for
1113  // vectors which get no constraints
1114  libmesh_assert_greater_equal(qoi_num, -2);
1115  _vector_is_adjoint[vec_name] = qoi_num;
1116 }
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176

◆ set_vector_preservation()

void libMesh::System::set_vector_preservation ( const std::string &  vec_name,
bool  preserve 
)
inherited

Allows one to set the boolean controlling whether the vector identified by vec_name should be "preserved": projected to new meshes, saved, etc.

Definition at line 1087 of file system.C.

References libMesh::System::_vector_projections.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), and main().

1089 {
1090  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1091 
1092  _vector_projections[vec_name] = preserve;
1093 }
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ solve()

void libMesh::LinearImplicitSystem::solve ( )
overridevirtualinherited

Assembles & solves the linear system A*x=b.

Reimplemented from libMesh::ImplicitSystem.

Reimplemented in libMesh::FrequencySystem.

Definition at line 105 of file linear_implicit_system.C.

References libMesh::LinearImplicitSystem::_final_linear_residual, libMesh::LinearImplicitSystem::_n_linear_iterations, libMesh::LinearImplicitSystem::_shell_matrix, libMesh::LinearImplicitSystem::_subset, libMesh::LinearImplicitSystem::_subset_solve_mode, libMesh::LinearImplicitSystem::assemble(), libMesh::System::assemble_before_solve, libMesh::SystemSubset::dof_ids(), libMesh::Parameters::get(), libMesh::System::get_equation_systems(), libMesh::ImplicitSystem::linear_solver, libMesh::ImplicitSystem::matrix, libMesh::System::name(), libMesh::on_command_line(), libMesh::EquationSystems::parameters, libMesh::Real, libMesh::System::request_matrix(), libMesh::ExplicitSystem::rhs, libMesh::System::solution, and libMesh::System::update().

Referenced by assemble_and_solve(), main(), SystemsTest::testDofCouplingWithVarGroups(), and PeriodicBCTest::testPeriodicBC().

106 {
107  if (this->assemble_before_solve)
108  // Assemble the linear system
109  this->assemble ();
110 
111  // Get a reference to the EquationSystems
112  const EquationSystems & es =
113  this->get_equation_systems();
114 
115  // If the linear solver hasn't been initialized, we do so here.
116  if (libMesh::on_command_line("--solver-system-names"))
117  linear_solver->init((this->name()+"_").c_str());
118  else
119  linear_solver->init();
120 
121  linear_solver->init_names(*this);
122 
123  // Get the user-specified linear solver tolerance
124  const double tol =
125  double(es.parameters.get<Real>("linear solver tolerance"));
126 
127  // Get the user-specified maximum # of linear solver iterations
128  const unsigned int maxits =
129  es.parameters.get<unsigned int>("linear solver maximum iterations");
130 
131  if (_subset != nullptr)
132  linear_solver->restrict_solve_to(&_subset->dof_ids(),_subset_solve_mode);
133 
134  // Solve the linear system. Several cases:
135  std::pair<unsigned int, Real> rval = std::make_pair(0,0.0);
136  if (_shell_matrix)
137  // 1.) Shell matrix with or without user-supplied preconditioner.
138  rval = linear_solver->solve(*_shell_matrix, this->request_matrix("Preconditioner"), *solution, *rhs, tol, maxits);
139  else
140  // 2.) No shell matrix, with or without user-supplied preconditioner
141  rval = linear_solver->solve (*matrix, this->request_matrix("Preconditioner"), *solution, *rhs, tol, maxits);
142 
143  if (_subset != nullptr)
144  linear_solver->restrict_solve_to(nullptr);
145 
146  // Store the number of linear iterations required to
147  // solve and the final residual.
148  _n_linear_iterations = rval.first;
149  _final_linear_residual = rval.second;
150 
151  // Update the system after the solve
152  this->update();
153 }
virtual void assemble() override
Prepares matrix and _dof_map for matrix assembly.
ShellMatrix< Number > * _shell_matrix
User supplies shell matrix or nullptr if no shell matrix is used.
unsigned int _n_linear_iterations
The number of linear iterations required to solve the linear system Ax=b.
const EquationSystems & get_equation_systems() const
Definition: system.h:730
NumericVector< Number > * rhs
The system matrix.
SubsetSolveMode _subset_solve_mode
If restrict-solve-to-subset mode is active, this member decides what happens with the dofs outside th...
const SparseMatrix< Number > * request_matrix(std::string_view mat_name) const
Definition: system.C:1047
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
virtual const std::vector< unsigned int > & dof_ids() const =0
Real _final_linear_residual
The final residual for the linear system Ax=b.
virtual void update()
Update the local values to reflect the solution on neighboring processors.
Definition: system.C:493
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
The system matrix.
bool on_command_line(std::string arg)
Definition: libmesh.C:924
const SystemSubset * _subset
The current subset on which to solve (or nullptr if none).
const std::string & name() const
Definition: system.h:2261
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1527
std::unique_ptr< LinearSolver< Number > > linear_solver
This class handles all the details of interfacing with various linear algebra packages like PETSc or ...

◆ solve_for_matrix_and_rhs()

void libMesh::RBConstruction::solve_for_matrix_and_rhs ( LinearSolver< Number > &  input_solver,
SparseMatrix< Number > &  input_matrix,
NumericVector< Number > &  input_rhs 
)
virtualinherited

Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side rhs.

Definition at line 133 of file rb_construction.C.

References libMesh::LinearImplicitSystem::_final_linear_residual, libMesh::LinearImplicitSystem::_n_linear_iterations, libMesh::DofMap::enforce_constraints_exactly(), libMesh::Parameters::get(), libMesh::System::get_dof_map(), libMesh::System::get_equation_systems(), libMesh::LinearSolver< T >::init(), libMesh::EquationSystems::parameters, libMesh::Real, libMesh::System::solution, libMesh::LinearSolver< T >::solve(), and libMesh::System::update().

Referenced by libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), truth_solve(), libMesh::RBConstruction::truth_solve(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

136 {
137  // This is similar to LinearImplicitSysmte::solve()
138 
139  // Get a reference to the EquationSystems
140  const EquationSystems & es =
141  this->get_equation_systems();
142 
143  // If the linear solver hasn't been initialized, we do so here.
144  input_solver.init();
145 
146  // Get the user-specifiied linear solver tolerance
147  const double tol =
148  double(es.parameters.get<Real>("linear solver tolerance"));
149 
150  // Get the user-specified maximum # of linear solver iterations
151  const unsigned int maxits =
152  es.parameters.get<unsigned int>("linear solver maximum iterations");
153 
154  // It's good practice to clear the solution vector first since it can
155  // affect convergence of iterative solvers
156  solution->zero();
157 
158  // Solve the linear system.
159  // Store the number of linear iterations required to
160  // solve and the final residual.
162  input_solver.solve (input_matrix, *solution, input_rhs, tol, maxits);
163 
165 
166  // Update the system after the solve
167  this->update();
168 }
unsigned int _n_linear_iterations
The number of linear iterations required to solve the linear system Ax=b.
const EquationSystems & get_equation_systems() const
Definition: system.h:730
virtual void init(const char *name=nullptr)=0
Initialize data structures if not done so already.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
virtual std::pair< unsigned int, Real > solve(SparseMatrix< T > &, NumericVector< T > &, NumericVector< T > &, const std::optional< double > tol=std::nullopt, const std::optional< unsigned int > m_its=std::nullopt)=0
This function calls the solver _solver_type preconditioned with the _preconditioner_type precondition...
Real _final_linear_residual
The final residual for the linear system Ax=b.
virtual void update()
Update the local values to reflect the solution on neighboring processors.
Definition: system.C:493
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const DofMap & get_dof_map() const
Definition: system.h:2293
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274

◆ solve_for_unconstrained_dofs()

void libMesh::System::solve_for_unconstrained_dofs ( NumericVector< Number > &  vec,
int  is_adjoint = -1 
) const
protectedinherited

Definition at line 2032 of file system_projection.C.

References libMesh::DofMap::build_sparsity(), libMesh::DofMap::computed_sparsity_already(), libMesh::DofMap::end_dof(), libMesh::DofMap::first_dof(), libMesh::NumericVector< T >::get(), libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector(), libMesh::DofMap::is_constrained_dof(), libMesh::NumericVector< T >::local_size(), libMesh::DofMap::n_dofs(), libMesh::DofMap::n_local_dofs(), libMesh::PARALLEL, libMesh::Real, libMesh::NumericVector< T >::size(), and libMesh::DofMap::update_sparsity_pattern().

2034 {
2035  const DofMap & dof_map = this->get_dof_map();
2036 
2037  std::unique_ptr<SparseMatrix<Number>> mat =
2039 
2040  std::unique_ptr<SparsityPattern::Build> sp;
2041 
2042  if (dof_map.computed_sparsity_already())
2043  dof_map.update_sparsity_pattern(*mat);
2044  else
2045  {
2046  mat->attach_dof_map(dof_map);
2047  sp = dof_map.build_sparsity(this->get_mesh());
2048  mat->attach_sparsity_pattern(*sp);
2049  }
2050 
2051  mat->init();
2052 
2053  libmesh_assert_equal_to(vec.size(), dof_map.n_dofs());
2054  libmesh_assert_equal_to(vec.local_size(), dof_map.n_local_dofs());
2055 
2056  std::unique_ptr<NumericVector<Number>> rhs =
2058 
2059  rhs->init(dof_map.n_dofs(), dof_map.n_local_dofs(), false,
2060  PARALLEL);
2061 
2062  // Here we start with the unconstrained (and indeterminate) linear
2063  // system, K*u = f, where K is the identity matrix for constrained
2064  // DoFs and 0 elsewhere, and f is the current solution values for
2065  // constrained DoFs and 0 elsewhere.
2066  // We then apply the usual heterogeneous constraint matrix C and
2067  // offset h, where u = C*x + h,
2068  // to get C^T*K*C*x = C^T*f - C^T*K*h
2069  // - a constrained and no-longer-singular system that finds the
2070  // closest approximation for the unconstrained degrees of freedom.
2071  //
2072  // Here, though "closest" is in an algebraic sense; we're
2073  // effectively using a pseudoinverse that optimizes in a
2074  // discretization-dependent norm. That only seems to give ~0.1%
2075  // excess error even in coarse unit test cases, but at some point it
2076  // might be reasonable to weight K and f properly.
2077 
2078  for (dof_id_type d : IntRange<dof_id_type>(dof_map.first_dof(),
2079  dof_map.end_dof()))
2080  {
2081  if (dof_map.is_constrained_dof(d))
2082  {
2083  DenseMatrix<Number> K(1,1);
2084  DenseVector<Number> F(1);
2085  std::vector<dof_id_type> dof_indices(1, d);
2086  K(0,0) = 1;
2087  F(0) = (*this->solution)(d);
2088  dof_map.heterogenously_constrain_element_matrix_and_vector
2089  (K, F, dof_indices, false, is_adjoint);
2090  mat->add_matrix(K, dof_indices);
2091  rhs->add_vector(F, dof_indices);
2092  }
2093  }
2094 
2095  std::unique_ptr<LinearSolver<Number>> linear_solver =
2097 
2098  linear_solver->solve(*mat, vec, *rhs,
2099  double(this->get_equation_systems().parameters.get<Real>("linear solver tolerance")),
2100  this->get_equation_systems().parameters.get<unsigned int>("linear solver maximum iterations"));
2101 }
static std::unique_ptr< LinearSolver< T > > build(const libMesh::Parallel::Communicator &comm_in, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a LinearSolver using the linear solver package specified by solver_package.
Definition: linear_solver.C:59
virtual numeric_index_type size() const =0
const EquationSystems & get_equation_systems() const
Definition: system.h:730
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
static std::unique_ptr< SparseMatrix< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package(), const MatrixBuildType matrix_build_type=MatrixBuildType::AUTOMATIC)
Builds a SparseMatrix<T> using the linear solver package specified by solver_package.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual numeric_index_type local_size() const =0
const DofMap & get_dof_map() const
Definition: system.h:2293
uint8_t dof_id_type
Definition: id_types.h:67

◆ system()

sys_type& libMesh::TransientSystem< RBConstruction >::system ( )
inlineinherited
Returns
A reference to *this.

Definition at line 89 of file transient_system.h.

89 { return *this; }

◆ system_type()

std::string libMesh::TransientSystem< RBConstruction >::system_type ( ) const
inlineoverridevirtualinherited
Returns
"Transient" prepended to T::system_type(). Helps in identifying the system type in an equation system file.

Reimplemented from libMesh::RBConstruction.

Definition at line 172 of file transient_system.h.

173 {
174  std::string type = "Transient";
175  type += Base::system_type ();
176 
177  return type;
178 }

◆ train_reduced_basis()

Real TransientRBConstruction::train_reduced_basis ( const bool  resize_rb_eval_data = true)
overridevirtual

Train the reduced basis.

Overridden so that we can set the flag compute_truth_projection_error to true so that the calls to truth_solve during the basis construction will compute the projection error. Other calls to truth_solve generally do not need to perform these projection calculations.

Reimplemented from libMesh::RBConstruction.

Definition at line 281 of file transient_rb_construction.C.

References compute_truth_projection_error, libMesh::RBConstruction::get_RB_training_type(), libMesh::Real, libMesh::RBConstruction::train_reduced_basis(), and value.

282 {
283  libmesh_error_msg_if(get_RB_training_type() == "POD",
284  "POD RB training is not supported with TransientRBConstruction");
285 
287  Real value = Parent::train_reduced_basis(resize_rb_eval_data);
289 
290  return value;
291 }
virtual Real train_reduced_basis(const bool resize_rb_eval_data=true)
Train the reduced basis.
const std::string & get_RB_training_type() const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const bool value
Definition: xdr_io.C:54
bool compute_truth_projection_error
Boolean flag that indicates whether we will compute the projection error for the truth solution into ...

◆ train_reduced_basis_with_greedy()

Real libMesh::RBConstruction::train_reduced_basis_with_greedy ( const bool  resize_rb_eval_data)
inherited

Train the reduced basis using the "Greedy algorithm.".

Each stage of the Greedy algorithm involves solving the reduced basis over a large training set and selecting the parameter at which the reduced basis error bound is largest, then performing a truth_solve at that parameter and enriching the reduced basis with the corresponding snapshot.

resize_rb_eval_data is a boolean flag to indicate whether or not we call rb_eval->resize_data_structures(Nmax). True by default, but we may set it to false if, for example, we are continuing from a previous training run and don't want to clobber the existing rb_eval data.

Returns
The final maximum a posteriori error bound on the training set.

Definition at line 1183 of file rb_construction.C.

References libMesh::RBConstruction::check_if_zero_truth_solve(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::enrich_RB_space(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_Nmax(), libMesh::RBConstruction::get_preevaluate_thetas_flag(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBEvaluation::greedy_param_list, libMesh::RBConstruction::greedy_termination_test(), libMesh::RBParametrized::initialize_parameters(), libMesh::out, libMesh::RBConstruction::preevaluate_thetas(), libMesh::RBParametrized::print_parameters(), libMesh::Real, libMesh::RBEvaluation::resize_data_structures(), libMesh::RBConstruction::skip_residual_in_train_reduced_basis, libMesh::RBConstruction::truth_solve(), libMesh::RBConstruction::update_greedy_param_list(), libMesh::RBConstruction::update_residual_terms(), libMesh::RBConstruction::update_system(), and libMesh::RBConstruction::use_empty_rb_solve_in_greedy.

Referenced by libMesh::RBConstruction::train_reduced_basis().

1184 {
1185  LOG_SCOPE("train_reduced_basis_with_greedy()", "RBConstruction");
1186 
1187  int count = 0;
1188 
1189  RBEvaluation & rbe = get_rb_evaluation();
1190 
1191  // initialize rbe's parameters
1192  rbe.initialize_parameters(*this);
1193 
1194  // possibly resize data structures according to Nmax
1195  if (resize_rb_eval_data)
1196  rbe.resize_data_structures(get_Nmax());
1197 
1198  // Clear the Greedy param list
1199  for (auto & plist : rbe.greedy_param_list)
1200  plist.clear();
1201 
1202  rbe.greedy_param_list.clear();
1203 
1204  Real training_greedy_error = 0.;
1205 
1206 
1207  // If we are continuing from a previous training run,
1208  // we might already be at the max number of basis functions.
1209  // If so, we can just return.
1210  if (rbe.get_n_basis_functions() >= get_Nmax())
1211  {
1212  libMesh::out << "Maximum number of basis functions reached: Nmax = "
1213  << get_Nmax() << std::endl;
1214  return 0.;
1215  }
1216 
1217  // Optionally pre-evaluate the theta functions on the entire (local) training parameter set.
1220 
1222  {
1223  // Compute the dual norms of the outputs if we haven't already done so.
1225 
1226  // Compute the Fq Riesz representor dual norms if we haven't already done so.
1228  }
1229 
1230  libMesh::out << std::endl << "---- Performing Greedy basis enrichment ----" << std::endl;
1231  Real initial_greedy_error = 0.;
1232  bool initial_greedy_error_initialized = false;
1233  while (true)
1234  {
1235  libMesh::out << std::endl << "---- Basis dimension: "
1236  << rbe.get_n_basis_functions() << " ----" << std::endl;
1237 
1238  if (count > 0 || (count==0 && use_empty_rb_solve_in_greedy))
1239  {
1240  libMesh::out << "Performing RB solves on training set" << std::endl;
1241  training_greedy_error = compute_max_error_bound();
1242 
1243  libMesh::out << "Maximum error bound is " << training_greedy_error << std::endl << std::endl;
1244 
1245  // record the initial error
1246  if (!initial_greedy_error_initialized)
1247  {
1248  initial_greedy_error = training_greedy_error;
1249  initial_greedy_error_initialized = true;
1250  }
1251 
1252  // Break out of training phase if we have reached Nmax
1253  // or if the training_tolerance is satisfied.
1254  if (greedy_termination_test(training_greedy_error, initial_greedy_error, count))
1255  break;
1256  }
1257 
1258  libMesh::out << "Performing truth solve at parameter:" << std::endl;
1259  print_parameters();
1260 
1261  // Update the list of Greedily selected parameters
1262  this->update_greedy_param_list();
1263 
1264  // Perform an Offline truth solve for the current parameter
1265  truth_solve(-1);
1266 
1268  {
1269  libMesh::out << "Zero basis function encountered hence ending basis enrichment" << std::endl;
1270  break;
1271  }
1272 
1273  // Add orthogonal part of the snapshot to the RB space
1274  libMesh::out << "Enriching the RB space" << std::endl;
1275  enrich_RB_space();
1276 
1277  update_system();
1278 
1279  // Check if we've reached Nmax now. We do this before calling
1280  // update_residual_terms() since we can skip that step if we've
1281  // already reached Nmax.
1282  if (rbe.get_n_basis_functions() >= this->get_Nmax())
1283  {
1284  libMesh::out << "Maximum number of basis functions reached: Nmax = "
1285  << get_Nmax() << std::endl;
1286  break;
1287  }
1288 
1290  {
1292  }
1293 
1294  // Increment counter
1295  count++;
1296  }
1297  this->update_greedy_param_list();
1298 
1299  return training_greedy_error;
1300 }
virtual Real truth_solve(int plot_solution)
Perform a "truth" solve, i.e.
virtual bool greedy_termination_test(Real abs_greedy_error, Real initial_greedy_error, int count)
Function that indicates when to terminate the Greedy basis training.
virtual Real compute_max_error_bound()
(i) Compute the a posteriori error bound for each set of parameters in the training set...
bool use_empty_rb_solve_in_greedy
A boolean flag to indicate whether or not we initialize the Greedy algorithm by performing rb_solves ...
bool get_preevaluate_thetas_flag() const
Get/set flag to pre-evaluate the theta functions.
void update_greedy_param_list()
Update the list of Greedily chosen parameters with current_parameters.
unsigned int get_Nmax() const
Get/set Nmax, the maximum number of RB functions we are willing to compute.
virtual void update_residual_terms(bool compute_inner_products=true)
Compute the terms that are combined ‘online’ to determine the dual norm of the residual.
virtual void update_system()
Update the system after enriching the RB space; this calls a series of functions to update the system...
void print_parameters() const
Print the current parameters.
bool skip_residual_in_train_reduced_basis
Boolean flag to indicate if we skip residual calculations in train_reduced_basis. ...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
OStreamProxy out
virtual void compute_Fq_representor_innerprods(bool compute_inner_products=true)
Compute the terms that are combined ‘online’ to determine the dual norm of the residual.
virtual bool check_if_zero_truth_solve() const
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
virtual void compute_output_dual_innerprods()
Compute and store the dual norm of each output functional.
virtual void enrich_RB_space()
Add a new basis function to the RB space.

◆ train_reduced_basis_with_POD()

void libMesh::RBConstruction::train_reduced_basis_with_POD ( )
inherited

Train the reduced basis using Proper Orthogonal Decomposition (POD).

This is an alternative to train_reduced_basis(), which uses the RB greedy algorithm. In contrast to the RB greedy algorithm, POD requires us to perform truth solves at all training samples, which can be computationally intensive.

The main advantage of using POD is that it does not rely on the RB error indicator. The RB error indicator typically stagnates due to rounding error at approximately square-root of machine precision, since it involves taking the square-root of a sum of terms that cancel. This error indicator stagnation puts a limit on the accuracy level that can be achieved with the RB greedy algorithm, so for cases where we need higher accuracy, the POD approach is a good alternative.

Definition at line 1396 of file rb_construction.C.

References libMesh::RBEvaluation::basis_functions, libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::RBConstruction::delta_N, libMesh::DenseMatrix< T >::el(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBParametrized::get_n_params(), libMesh::RBConstructionBase< LinearImplicitSystem >::get_n_training_samples(), libMesh::RBConstruction::get_Nmax(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::libmesh_assert(), libMesh::libmesh_conj(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::out, libMesh::PARALLEL, libMesh::Real, libMesh::RBConstruction::rel_training_tolerance, libMesh::RBEvaluation::resize_data_structures(), libMesh::RBConstructionBase< LinearImplicitSystem >::serial_training_set, libMesh::RBConstructionBase< LinearImplicitSystem >::set_params_from_training_set(), libMesh::System::solution, std::sqrt(), libMesh::DenseMatrix< T >::svd(), libMesh::RBConstruction::truth_solve(), libMesh::RBConstruction::update_system(), and libMesh::SparseMatrix< T >::vector_mult().

Referenced by libMesh::RBConstruction::train_reduced_basis().

1397 {
1398  // We need to use the same training set on all processes so that
1399  // the truth solves below work correctly in parallel.
1400  libmesh_error_msg_if(!serial_training_set, "We must use a serial training set with POD");
1401  libmesh_error_msg_if(get_rb_evaluation().get_n_basis_functions() > 0, "Basis should not already be initialized");
1402 
1405 
1406  // Storage for the POD snapshots
1407  unsigned int n_snapshots = get_n_training_samples();
1408 
1409  if (get_n_params() == 0)
1410  {
1411  // In this case we should have generated an empty training set
1412  // so assert this
1413  libmesh_assert(n_snapshots == 0);
1414 
1415  // If we have no parameters, then we should do exactly one "truth solve"
1416  n_snapshots = 1;
1417  }
1418 
1419  std::vector<std::unique_ptr<NumericVector<Number>>> POD_snapshots(n_snapshots);
1420  for (unsigned int i=0; i<n_snapshots; i++)
1421  {
1422  POD_snapshots[i] = NumericVector<Number>::build(this->comm());
1423  POD_snapshots[i]->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
1424  }
1425 
1426  // We use the same training set on all processes
1427  libMesh::out << std::endl;
1428  for (unsigned int i=0; i<n_snapshots; i++)
1429  {
1430  if (get_n_params() > 0)
1431  {
1433  }
1434 
1435  libMesh::out << "Truth solve " << (i+1) << " of " << n_snapshots << std::endl;
1436 
1437  truth_solve(-1);
1438 
1439  *POD_snapshots[i] = *solution;
1440  }
1441  libMesh::out << std::endl;
1442 
1443  // Set up the "correlation matrix"
1444  DenseMatrix<Number> correlation_matrix(n_snapshots,n_snapshots);
1445  for (unsigned int i=0; i<n_snapshots; i++)
1446  {
1448  *inner_product_storage_vector, *POD_snapshots[i]);
1449 
1450  for (unsigned int j=0; j<=i; j++)
1451  {
1452  Number inner_prod = (POD_snapshots[j]->dot(*inner_product_storage_vector));
1453 
1454  correlation_matrix(i,j) = inner_prod;
1455  if(i != j)
1456  {
1457  correlation_matrix(j,i) = libmesh_conj(inner_prod);
1458  }
1459  }
1460  }
1461 
1462  // compute SVD of correlation matrix
1463  DenseVector<Real> sigma( n_snapshots );
1464  DenseMatrix<Number> U( n_snapshots, n_snapshots );
1465  DenseMatrix<Number> VT( n_snapshots, n_snapshots );
1466  correlation_matrix.svd(sigma, U, VT );
1467 
1468  libmesh_error_msg_if(sigma(0) == 0., "Zero singular value encountered in POD construction");
1469 
1470  // Add dominant vectors from the POD as basis functions.
1471  unsigned int j = 0;
1472  while (true)
1473  {
1474  if (j >= get_Nmax() || j >= n_snapshots)
1475  {
1476  libMesh::out << "Maximum number of basis functions (" << j << ") reached." << std::endl;
1477  break;
1478  }
1479 
1480  // The "energy" error in the POD approximation is determined by the first omitted
1481  // singular value, i.e. sigma(j). We normalize by sigma(0), which gives the total
1482  // "energy", in order to obtain a relative error.
1483  const Real rel_err = std::sqrt(sigma(j)) / std::sqrt(sigma(0));
1484 
1485  libMesh::out << "Number of basis functions: " << j
1486  << ", POD error norm: " << rel_err << std::endl;
1487 
1488  if (rel_err < this->rel_training_tolerance)
1489  {
1490  libMesh::out << "Training tolerance reached." << std::endl;
1491  break;
1492  }
1493 
1494  std::unique_ptr< NumericVector<Number> > v = POD_snapshots[j]->zero_clone();
1495  for ( unsigned int i=0; i<n_snapshots; ++i )
1496  {
1497  v->add( U.el(i, j), *POD_snapshots[i] );
1498  }
1499 
1500  Real norm_v = std::sqrt(sigma(j));
1501  v->scale( 1./norm_v );
1502 
1503  get_rb_evaluation().basis_functions.emplace_back( std::move(v) );
1504 
1505  j++;
1506  }
1507  libMesh::out << std::endl;
1508 
1510  update_system();
1511 }
T libmesh_conj(T a)
virtual void resize_data_structures(const unsigned int Nmax, bool resize_error_bound_data=true)
Resize and clear the data vectors corresponding to the value of Nmax.
virtual Real truth_solve(int plot_solution)
Perform a "truth" solve, i.e.
template class LIBMESH_EXPORT DenseVector< Real >
Definition: dense_vector.C:29
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
std::vector< std::unique_ptr< NumericVector< Number > > > basis_functions
The libMesh vectors storing the finite element coefficients of the RB basis functions.
const Parallel::Communicator & comm() const
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
Real rel_training_tolerance
Relative and absolute tolerances for training reduced basis using the Greedy scheme.
unsigned int get_Nmax() const
Get/set Nmax, the maximum number of RB functions we are willing to compute.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
virtual void update_system()
Update the system after enriching the RB space; this calls a series of functions to update the system...
libmesh_assert(ctx)
unsigned int delta_N
The number of basis functions that we add at each greedy step.
numeric_index_type get_n_training_samples() const
Get the number of global training samples.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
void set_params_from_training_set(unsigned int global_index)
Set parameters to the RBParameters stored in index global_index of the global training set...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
OStreamProxy out
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.
unsigned int get_n_params() const
Get the number of parameters.

◆ truth_assembly()

void TransientRBConstruction::truth_assembly ( )
overridevirtual

Assemble the truth system in the transient linear case.

Reimplemented from libMesh::RBConstruction.

Definition at line 400 of file transient_rb_construction.C.

References libMesh::SparseMatrix< T >::add(), libMesh::NumericVector< T >::add(), add_scaled_mass_matrix(), libMesh::NumericVector< T >::build(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::ParallelObject::comm(), libMesh::System::current_local_solution, libMesh::RBThetaExpansion::eval_A_theta(), libMesh::RBThetaExpansion::eval_F_theta(), libMesh::RBConstruction::get_Aq(), libMesh::RBTemporalDiscretization::get_control(), libMesh::RBTemporalDiscretization::get_delta_t(), libMesh::RBTemporalDiscretization::get_euler_theta(), libMesh::RBConstruction::get_Fq(), libMesh::RBThetaExpansion::get_n_A_terms(), libMesh::RBThetaExpansion::get_n_F_terms(), libMesh::RBParametrized::get_parameters(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::RBTemporalDiscretization::get_time_step(), mass_matrix_scaled_matvec(), libMesh::ImplicitSystem::matrix, libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, libMesh::Real, libMesh::ExplicitSystem::rhs, libMesh::SparseMatrix< T >::vector_mult(), libMesh::NumericVector< T >::zero(), and libMesh::SparseMatrix< T >::zero().

Referenced by truth_solve().

401 {
402  LOG_SCOPE("truth_assembly()", "TransientRBConstruction");
403 
404  this->matrix->close();
405 
406  this->matrix->zero();
407  this->rhs->zero();
408 
409  const RBParameters & mu = get_parameters();
410 
411  TransientRBThetaExpansion & trans_theta_expansion =
412  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
413 
414  const unsigned int Q_a = trans_theta_expansion.get_n_A_terms();
415  const unsigned int Q_f = trans_theta_expansion.get_n_F_terms();
416 
417  const Real dt = get_delta_t();
418  const Real euler_theta = get_euler_theta();
419 
420  {
421  // We should have already assembled the matrices
422  // and vectors in the affine expansion, so
423  // just use them
424 
427 
428  std::unique_ptr<NumericVector<Number>> temp_vec = NumericVector<Number>::build(this->comm());
429  temp_vec->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
430 
431  for (unsigned int q_a=0; q_a<Q_a; q_a++)
432  {
433  matrix->add(euler_theta*trans_theta_expansion.eval_A_theta(q_a,mu), *get_Aq(q_a));
434 
435  get_Aq(q_a)->vector_mult(*temp_vec, *current_local_solution);
436  temp_vec->scale( -(1.-euler_theta)*trans_theta_expansion.eval_A_theta(q_a,mu) );
437  rhs->add(*temp_vec);
438  }
439 
440  for (unsigned int q_f=0; q_f<Q_f; q_f++)
441  {
442  *temp_vec = *get_Fq(q_f);
443  temp_vec->scale( get_control(get_time_step())*trans_theta_expansion.eval_F_theta(q_f,mu) );
444  rhs->add(*temp_vec);
445  }
446 
447  }
448 
449  this->matrix->close();
450  this->rhs->close();
451 }
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
SparseMatrix< Number > * get_Aq(unsigned int q)
Get a pointer to Aq.
NumericVector< Number > * rhs
The system matrix.
const Parallel::Communicator & comm() const
NumericVector< Number > * get_Fq(unsigned int q)
Get a pointer to Fq.
dof_id_type n_local_dofs() const
Definition: system.C:150
Real get_delta_t() const
Get/set delta_t, the time-step size.
Real get_euler_theta() const
Get/set euler_theta, parameter that determines the temporal discretization.
dof_id_type n_dofs() const
Definition: system.C:113
virtual void zero()=0
Set all entries to zero.
virtual void add(const numeric_index_type i, const numeric_index_type j, const T value)=0
Add value to the element (i,j).
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
virtual void zero()=0
Set all entries to 0.
const RBParameters & get_parameters() const
Get the current parameters.
unsigned int get_time_step() const
Get/set the current time-step.
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
The system matrix.
void add_scaled_mass_matrix(Number scalar, SparseMatrix< Number > *input_matrix)
Add the scaled mass matrix (assembled for the current parameter) to input_matrix. ...
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
void mass_matrix_scaled_matvec(Number scalar, NumericVector< Number > &dest, NumericVector< Number > &arg)
Perform a matrix-vector multiplication with the current mass matrix and store the result in dest...
virtual void add(const numeric_index_type i, const T value)=0
Adds value to the vector entry specified by i.
Real get_control(const unsigned int k) const
Get/set the RHS control.

◆ truth_solve()

Real TransientRBConstruction::truth_solve ( int  write_interval)
overridevirtual

Perform a truth solve at the current parameter.

Reimplemented from libMesh::RBConstruction.

Definition at line 516 of file transient_rb_construction.C.

References libMesh::RBConstruction::assert_convergence, libMesh::RBConstruction::check_convergence(), compute_truth_projection_error, libMesh::System::current_local_solution, libMesh::NumericVector< T >::dot(), libMesh::RBThetaExpansion::eval_output_theta(), libMesh::System::get_equation_systems(), libMesh::LinearImplicitSystem::get_linear_solver(), libMesh::System::get_mesh(), libMesh::RBThetaExpansion::get_n_output_terms(), libMesh::RBThetaExpansion::get_n_outputs(), libMesh::RBTemporalDiscretization::get_n_time_steps(), libMesh::RBConstruction::get_output_vector(), libMesh::RBParametrized::get_parameters(), libMesh::RBConstruction::get_rb_theta_expansion(), initialize_truth(), libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, L2_matrix, libMesh::libmesh_real(), libMesh::ImplicitSystem::linear_solver, libMesh::ImplicitSystem::matrix, libMesh::TransientSystem< RBConstruction >::old_local_solution, libMesh::out, libMesh::Real, libMesh::ExplicitSystem::rhs, set_error_temporal_data(), libMesh::RBTemporalDiscretization::set_time_step(), libMesh::System::solution, libMesh::RBConstruction::solve_for_matrix_and_rhs(), std::sqrt(), truth_assembly(), truth_outputs_all_k, and libMesh::MeshOutput< MT >::write_equation_systems().

517 {
518  LOG_SCOPE("truth_solve()", "TransientRBConstruction");
519 
520  const RBParameters & mu = get_parameters();
521  const unsigned int n_time_steps = get_n_time_steps();
522 
523  // // NumericVector for computing true L2 error
524  // std::unique_ptr<NumericVector<Number>> temp = NumericVector<Number>::build();
525  // temp->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
526 
527  // Apply initial condition again.
529  set_time_step(0);
530 
531  // Now compute the truth outputs
532  for (unsigned int n=0; n<get_rb_theta_expansion().get_n_outputs(); n++)
533  {
534  truth_outputs_all_k[n][0] = 0.;
535  for (unsigned int q_l=0; q_l<get_rb_theta_expansion().get_n_output_terms(n); q_l++)
536  {
538  get_output_vector(n,q_l)->dot(*solution);
539  }
540  }
541 
542  // Load initial projection error into temporal_data dense matrix
545 
546  for (unsigned int time_level=1; time_level<=n_time_steps; time_level++)
547  {
548  set_time_step(time_level);
549 
551 
552  // We assume that the truth assembly has been attached to the system
553  truth_assembly();
554 
555  // truth_assembly assembles into matrix and rhs, so use those for the solve
557 
558  // The matrix doesn't change at each timestep, so we
559  // can set reuse_preconditioner == true
560  linear_solver->reuse_preconditioner(true);
561 
562  if (assert_convergence)
563  {
565  }
566 
567  // Now compute the truth outputs
568  for (unsigned int n=0; n<get_rb_theta_expansion().get_n_outputs(); n++)
569  {
570  truth_outputs_all_k[n][time_level] = 0.;
571  for (unsigned int q_l=0; q_l<get_rb_theta_expansion().get_n_output_terms(n); q_l++)
572  {
573  truth_outputs_all_k[n][time_level] +=
575  }
576  }
577 
578  // load projection error into column _k of temporal_data matrix
581 
582  if ((write_interval > 0) && (time_level%write_interval == 0))
583  {
584  libMesh::out << std::endl << "Truth solve, plotting time step " << time_level << std::endl;
585 
586  std::ostringstream file_name;
587 
588  file_name << "truth.e.";
589  file_name << std::setw(3)
590  << std::setprecision(0)
591  << std::setfill('0')
592  << std::right
593  << time_level;
594 
595 #ifdef LIBMESH_HAVE_EXODUS_API
596  ExodusII_IO(get_mesh()).write_equation_systems (file_name.str(),
597  this->get_equation_systems());
598 #endif
599  }
600  }
601 
602  // Set reuse_preconditioner back to false for subsequent solves.
603  linear_solver->reuse_preconditioner(false);
604 
605  // Get the L2 norm of the truth solution at time-level _K
606  // Useful for normalizing our true error data
608  Real final_truth_L2_norm = libmesh_real(std::sqrt(inner_product_storage_vector->dot(*solution)));
609 
610 
611  return final_truth_L2_norm;
612 }
T libmesh_real(T a)
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
virtual Number eval_output_theta(unsigned int output_index, unsigned int q_l, const RBParameters &mu) const
Evaluate theta_q_l at the current parameter.
bool assert_convergence
A boolean flag to indicate whether to check for proper convergence after each solve.
virtual void truth_assembly() override
Assemble the truth system in the transient linear case.
virtual void initialize_truth()
This function imposes a truth initial condition, defaults to zero initial condition if the flag nonze...
const EquationSystems & get_equation_systems() const
Definition: system.h:730
NumericVector< Number > * rhs
The system matrix.
std::vector< std::vector< Number > > truth_outputs_all_k
The truth outputs for all time-levels from the most recent truth_solve.
virtual LinearSolver< Number > * get_linear_solver() const override
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
virtual T dot(const NumericVector< T > &v) const =0
unsigned int get_n_outputs() const
Get n_outputs, the number output functionals.
const MeshBase & get_mesh() const
Definition: system.h:2277
NumericVector< Number > * old_local_solution
All the values I need to compute my contribution to the simulation at hand.
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
virtual void solve_for_matrix_and_rhs(LinearSolver< Number > &input_solver, SparseMatrix< Number > &input_matrix, NumericVector< Number > &input_rhs)
Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side ...
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
Number set_error_temporal_data()
Set column k (i.e.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
const RBParameters & get_parameters() const
Get the current parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
unsigned int get_n_output_terms(unsigned int output_index) const
Get the number of affine terms associated with the specified output.
void check_convergence(LinearSolver< Number > &input_solver)
Check if the linear solver reports convergence.
OStreamProxy out
SparseMatrix< Number > * matrix
The system matrix.
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
unsigned int get_n_time_steps() const
Get/set the total number of time-steps.
NumericVector< Number > * get_output_vector(unsigned int n, unsigned int q_l)
Get a pointer to the n^th output.
bool compute_truth_projection_error
Boolean flag that indicates whether we will compute the projection error for the truth solution into ...
std::unique_ptr< LinearSolver< Number > > linear_solver
This class handles all the details of interfacing with various linear algebra packages like PETSc or ...

◆ update()

void libMesh::System::update ( )
virtualinherited

Update the local values to reflect the solution on neighboring processors.

Reimplemented in SolidSystem.

Definition at line 493 of file system.C.

References libMesh::System::_dof_map, libMesh::System::current_local_solution, libMesh::libmesh_assert(), and libMesh::System::solution.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::UniformRefinementEstimator::_estimate_error(), HDGProblem::assemble(), libMesh::FEMSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::NonlinearImplicitSystem::assembly(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::NewmarkSolver::compute_initial_accel(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::GMVIO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), DMlibMeshFunction(), DMlibMeshJacobian(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::CondensedEigenSystem::get_eigenpair(), initialize_truth(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::NewtonSolver::line_search(), libMesh::RBConstruction::load_basis_function(), load_rb_solution(), libMesh::RBConstruction::load_rb_solution(), main(), libMesh::FEMSystem::mesh_position_get(), HeatSystem::perturb_accumulate_residuals(), libMesh::FEMSystem::postprocess(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::MemorySolutionHistory::retrieve(), libMesh::FileSolutionHistory::retrieve(), libMesh::NewtonSolver::solve(), libMesh::ExplicitSystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::OptimizationSystem::solve(), libMesh::NonlinearImplicitSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::MeshFunctionSolutionTransfer::transfer(), and libMesh::DirectSolutionTransfer::transfer().

494 {
495  parallel_object_only();
496 
497  libmesh_assert(solution->closed());
498 
499  const std::vector<dof_id_type> & send_list = _dof_map->get_send_list ();
500 
501  // Check sizes
502  libmesh_assert_equal_to (current_local_solution->size(), solution->size());
503  // More processors than elements => empty send_list
504  // libmesh_assert (!send_list.empty());
505  libmesh_assert_less_equal (send_list.size(), solution->size());
506 
507  // Create current_local_solution from solution. This will
508  // put a local copy of solution into current_local_solution.
509  // Only the necessary values (specified by the send_list)
510  // are copied to minimize communication
511  solution->localize (*current_local_solution, send_list);
512 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585

◆ update_global_solution() [1/2]

void libMesh::System::update_global_solution ( std::vector< Number > &  global_soln) const
inherited

Fill the input vector global_soln so that it contains the global solution on all processors.

Requires communication with all other processors.

Definition at line 728 of file system.C.

References libMesh::System::solution.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::ExactErrorEstimator::estimate_error(), main(), and libMesh::InterMeshProjection::project_system_vectors().

729 {
730  parallel_object_only();
731 
732  global_soln.resize (solution->size());
733 
734  solution->localize (global_soln);
735 }
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573

◆ update_global_solution() [2/2]

void libMesh::System::update_global_solution ( std::vector< Number > &  global_soln,
const processor_id_type  dest_proc 
) const
inherited

Fill the input vector global_soln so that it contains the global solution on processor dest_proc.

Requires communication with all other processors.

Definition at line 739 of file system.C.

References libMesh::System::solution.

741 {
742  parallel_object_only();
743 
744  global_soln.resize (solution->size());
745 
746  solution->localize_to_one (global_soln, dest_proc);
747 }
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573

◆ update_greedy_param_list()

void libMesh::RBConstruction::update_greedy_param_list ( )
protectedinherited

Update the list of Greedily chosen parameters with current_parameters.

Definition at line 1550 of file rb_construction.C.

References libMesh::RBParametrized::get_parameters(), libMesh::RBConstruction::get_rb_evaluation(), and libMesh::RBEvaluation::greedy_param_list.

Referenced by libMesh::RBConstruction::train_reduced_basis_with_greedy().

1551 {
1553 }
std::vector< RBParameters > greedy_param_list
The list of parameters selected by the Greedy algorithm in generating the Reduced Basis associated wi...
const RBParameters & get_parameters() const
Get the current parameters.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ update_RB_initial_condition_all_N()

void TransientRBConstruction::update_RB_initial_condition_all_N ( )

Compute the L2 projection of the initial condition onto the RB space for 1 <= N <= RB_size and store each projection in RB_initial_condition_matrix.

Definition at line 1101 of file transient_rb_construction.C.

References libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::RBConstruction::delta_N, libMesh::DenseVector< T >::dot(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::DenseMatrix< T >::get_principal_submatrix(), libMesh::DenseVector< T >::get_principal_subvector(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::TransientRBEvaluation::initial_L2_error_all_N, initialize_truth(), L2_matrix, libMesh::libmesh_real(), libMesh::DenseMatrix< T >::lu_solve(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, RB_ic_proj_rhs_all_N, libMesh::TransientRBEvaluation::RB_initial_condition_all_N, libMesh::TransientRBEvaluation::RB_L2_matrix, libMesh::System::solution, std::sqrt(), and libMesh::DenseVector< T >::zero().

Referenced by update_system().

1102 {
1103  LOG_SCOPE("update_RB_initial_condition_all_N()", "TransientRBConstruction");
1104 
1105  TransientRBEvaluation & trans_rb_eval = cast_ref<TransientRBEvaluation &>(get_rb_evaluation());
1106 
1107  // Load the initial condition into the solution vector
1108  initialize_truth();
1109 
1110  std::unique_ptr<NumericVector<Number>> temp1 = NumericVector<Number>::build(this->comm());
1111  temp1->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
1112 
1113  std::unique_ptr<NumericVector<Number>> temp2 = NumericVector<Number>::build(this->comm());
1114  temp2->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
1115 
1116 
1117  unsigned int RB_size = get_rb_evaluation().get_n_basis_functions();
1118 
1119  // First compute the right-hand side vector for the L2 projection
1120  L2_matrix->vector_mult(*temp1, *solution);
1121 
1122  for (unsigned int i=(RB_size-delta_N); i<RB_size; i++)
1123  {
1124  RB_ic_proj_rhs_all_N(i) = temp1->dot(get_rb_evaluation().get_basis_function(i));
1125  }
1126 
1127 
1128  // Now compute the projection for each N
1129  DenseMatrix<Number> RB_L2_matrix_N;
1130  DenseVector<Number> RB_rhs_N;
1131  for (unsigned int N=(RB_size-delta_N); N<RB_size; N++)
1132  {
1133  // We have to index here by N+1 since the loop index is zero-based.
1134  trans_rb_eval.RB_L2_matrix.get_principal_submatrix(N+1, RB_L2_matrix_N);
1135 
1137 
1138  DenseVector<Number> RB_ic_N(N+1);
1139 
1140  // Now solve the linear system
1141  RB_L2_matrix_N.lu_solve(RB_rhs_N, RB_ic_N);
1142 
1143  // Load RB_ic_N into RB_initial_condition_all_N
1144  trans_rb_eval.RB_initial_condition_all_N[N] = RB_ic_N;
1145 
1146  // Compute the L2 error for the RB initial condition
1147  // This part is dependent on the truth space.
1148 
1149  // load the RB solution into temp1
1150  temp1->zero();
1151  for (unsigned int i=0; i<N+1; i++)
1152  {
1153  temp1->add(RB_ic_N(i), get_rb_evaluation().get_basis_function(i));
1154  }
1155 
1156  // subtract truth initial condition from RB_ic_N
1157  temp1->add(-1., *solution);
1158 
1159  // Compute L2 norm error, i.e. sqrt(M(solution,solution))
1160  temp2->zero();
1161  L2_matrix->vector_mult(*temp2, *temp1);
1162 
1163  trans_rb_eval.initial_L2_error_all_N[N] = libmesh_real(std::sqrt(temp2->dot(*temp1)));
1164  }
1165 }
T libmesh_real(T a)
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
virtual void initialize_truth()
This function imposes a truth initial condition, defaults to zero initial condition if the flag nonze...
const Parallel::Communicator & comm() const
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
dof_id_type n_local_dofs() const
Definition: system.C:150
void get_principal_subvector(unsigned int sub_n, DenseVector< T > &dest) const
Puts the principal subvector of size sub_n (i.e.
Definition: dense_vector.h:691
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
unsigned int delta_N
The number of basis functions that we add at each greedy step.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
CompareTypes< T, T2 >::supertype dot(const DenseVector< T2 > &vec) const
Definition: dense_vector.h:470
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
DenseVector< Number > RB_ic_proj_rhs_all_N
The vector that stores the right-hand side for the initial condition projections. ...

◆ update_RB_system_matrices()

void TransientRBConstruction::update_RB_system_matrices ( )
overrideprotectedvirtual

Compute the reduced basis matrices for the current basis.

Reimplemented from libMesh::RBConstruction.

Definition at line 908 of file transient_rb_construction.C.

References libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::RBConstruction::delta_N, libMesh::NumericVector< T >::dot(), libMesh::RBEvaluation::get_basis_function(), get_M_q(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBConstruction::get_rb_theta_expansion(), L2_matrix, libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, libMesh::TransientRBEvaluation::RB_L2_matrix, libMesh::TransientRBEvaluation::RB_M_q_vector, libMesh::RBConstruction::update_RB_system_matrices(), value, and libMesh::SparseMatrix< T >::vector_mult().

909 {
910  LOG_SCOPE("update_RB_system_matrices()", "TransientRBConstruction");
911 
913 
914  TransientRBEvaluation & trans_rb_eval = cast_ref<TransientRBEvaluation &>(get_rb_evaluation());
915 
916  TransientRBThetaExpansion & trans_theta_expansion =
917  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
918  const unsigned int Q_m = trans_theta_expansion.get_n_M_terms();
919 
920  unsigned int RB_size = get_rb_evaluation().get_n_basis_functions();
921 
922  std::unique_ptr<NumericVector<Number>> temp = NumericVector<Number>::build(this->comm());
923  temp->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
924 
925  for (unsigned int i=(RB_size-delta_N); i<RB_size; i++)
926  {
927  for (unsigned int j=0; j<RB_size; j++)
928  {
929  // Compute reduced L2 matrix
930  temp->zero();
931  L2_matrix->vector_mult(*temp, get_rb_evaluation().get_basis_function(j));
932 
934  trans_rb_eval.RB_L2_matrix(i,j) = value;
935  if (i!=j)
936  {
937  // The L2 matrix is assumed
938  // to be symmetric
939  trans_rb_eval.RB_L2_matrix(j,i) = value;
940  }
941 
942  for (unsigned int q_m=0; q_m<Q_m; q_m++)
943  {
944  // Compute reduced M_q matrix
945  temp->zero();
946  get_M_q(q_m)->vector_mult(*temp, get_rb_evaluation().get_basis_function(j));
947 
948  value = (get_rb_evaluation().get_basis_function(i)).dot(*temp);
949  trans_rb_eval.RB_M_q_vector[q_m](i,j) = value;
950 
951  if (i!=j)
952  {
953  // Each mass matrix term is assumed
954  // to be symmetric
955  trans_rb_eval.RB_M_q_vector[q_m](j,i) = value;
956  }
957  }
958 
959  }
960  }
961 }
std::unique_ptr< SparseMatrix< Number > > L2_matrix
The L2 matrix.
SparseMatrix< Number > * get_M_q(unsigned int q)
Get a pointer to M_q.
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
const Parallel::Communicator & comm() const
virtual T dot(const NumericVector< T > &v) const =0
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
virtual void update_RB_system_matrices()
Compute the reduced basis matrices for the current basis.
NumericVector< Number > & get_basis_function(unsigned int i)
Get a reference to the i^th basis function.
unsigned int delta_N
The number of basis functions that we add at each greedy step.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
static const bool value
Definition: xdr_io.C:54
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ update_residual_terms()

void TransientRBConstruction::update_residual_terms ( bool  compute_inner_products)
overrideprotectedvirtual

Compute the terms that are combined ‘online’ to determine the dual norm of the residual.

Reimplemented from libMesh::RBConstruction.

Definition at line 966 of file transient_rb_construction.C.

References libMesh::TransientRBEvaluation::Aq_Mq_representor_innerprods, libMesh::RBEvaluation::Aq_representor, libMesh::RBConstruction::assert_convergence, libMesh::NumericVector< T >::build(), libMesh::RBConstruction::check_convergence(), libMesh::ParallelObject::comm(), libMesh::RBConstruction::delta_N, libMesh::LinearImplicitSystem::final_linear_residual(), libMesh::TransientRBEvaluation::Fq_Mq_representor_innerprods, libMesh::RBConstruction::Fq_representor, libMesh::RBEvaluation::get_n_basis_functions(), libMesh::TransientRBThetaExpansion::get_n_M_terms(), libMesh::RBConstruction::get_non_dirichlet_inner_product_matrix_if_avail(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::RBConstruction::get_rb_theta_expansion(), libMesh::Utility::get_timestamp(), libMesh::RBConstruction::inner_product_matrix, libMesh::RBConstruction::inner_product_solver, libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector, libMesh::RBConstructionBase< LinearImplicitSystem >::is_quiet(), libMesh::libmesh_assert(), libMesh::TransientRBEvaluation::M_q_representor, M_q_vector, libMesh::TransientRBEvaluation::Mq_Mq_representor_innerprods, libMesh::System::n_dofs(), libMesh::LinearImplicitSystem::n_linear_iterations(), libMesh::System::n_local_dofs(), libMesh::out, libMesh::PARALLEL, libMesh::ExplicitSystem::rhs, libMesh::System::solution, libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::RBConstruction::update_residual_terms(), libMesh::SparseMatrix< T >::vector_mult(), and libMesh::NumericVector< T >::zero().

967 {
968  LOG_SCOPE("update_residual_terms()", "TransientRBConstruction");
969 
970  Parent::update_residual_terms(compute_inner_products);
971 
972  TransientRBEvaluation & trans_rb_eval = cast_ref<TransientRBEvaluation &>(get_rb_evaluation());
973 
974  TransientRBThetaExpansion & trans_theta_expansion =
975  cast_ref<TransientRBThetaExpansion &>(get_rb_theta_expansion());
976 
977  const unsigned int Q_m = trans_theta_expansion.get_n_M_terms();
978  const unsigned int Q_a = trans_theta_expansion.get_n_A_terms();
979  const unsigned int Q_f = trans_theta_expansion.get_n_F_terms();
980 
981  unsigned int RB_size = get_rb_evaluation().get_n_basis_functions();
982 
983  for (unsigned int q_m=0; q_m<Q_m; q_m++)
984  {
985  for (unsigned int i=(RB_size-delta_N); i<RB_size; i++)
986  {
987  // Initialize the vectors when we need them
988  if (!trans_rb_eval.M_q_representor[q_m][i])
989  {
990  trans_rb_eval.M_q_representor[q_m][i] = NumericVector<Number>::build(this->comm());
991  trans_rb_eval.M_q_representor[q_m][i]->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
992  }
993 
994  libmesh_assert(trans_rb_eval.M_q_representor[q_m][i]->size() == this->n_dofs() &&
995  trans_rb_eval.M_q_representor[q_m][i]->local_size() == this->n_local_dofs() );
996 
997  rhs->zero();
998  M_q_vector[q_m]->vector_mult(*rhs, get_rb_evaluation().get_basis_function(i));
999 
1000  if (!is_quiet())
1001  libMesh::out << "Starting solve i="
1002  << i << " in TransientRBConstruction::update_residual_terms() at "
1003  << Utility::get_timestamp() << std::endl;
1004 
1006 
1007  if (assert_convergence)
1009 
1010  if (!is_quiet())
1011  {
1012  libMesh::out << "Finished solve i="
1013  << i << " in TransientRBConstruction::update_residual_terms() at "
1014  << Utility::get_timestamp() << std::endl;
1015 
1017  << " iterations, final residual "
1018  << this->final_linear_residual() << std::endl;
1019  }
1020 
1021  *trans_rb_eval.M_q_representor[q_m][i] = *solution;
1022  }
1023  }
1024 
1025  // Now compute and store the inner products if requested
1026  if (compute_inner_products)
1027  {
1028  for (unsigned int q_f=0; q_f<Q_f; q_f++)
1029  {
1031 
1032  for (unsigned int i=(RB_size-delta_N); i<RB_size; i++)
1033  {
1034  for (unsigned int q_m=0; q_m<Q_m; q_m++)
1035  {
1036  trans_rb_eval.Fq_Mq_representor_innerprods[q_f][q_m][i] =
1037  trans_rb_eval.M_q_representor[q_m][i]->dot(*inner_product_storage_vector);
1038  } // end for q_m
1039  } // end for i
1040  } // end for q_f
1041 
1042  unsigned int q=0;
1043  for (unsigned int q_m1=0; q_m1<Q_m; q_m1++)
1044  {
1045  for (unsigned int q_m2=q_m1; q_m2<Q_m; q_m2++)
1046  {
1047  for (unsigned int i=(RB_size-delta_N); i<RB_size; i++)
1048  {
1049  for (unsigned int j=0; j<RB_size; j++)
1050  {
1052 
1053  trans_rb_eval.Mq_Mq_representor_innerprods[q][i][j] =
1054  trans_rb_eval.M_q_representor[q_m1][i]->dot(*inner_product_storage_vector);
1055 
1056  if (i != j)
1057  {
1059  *trans_rb_eval.M_q_representor[q_m2][i]);
1060 
1061  trans_rb_eval.Mq_Mq_representor_innerprods[q][j][i] =
1062  trans_rb_eval.M_q_representor[q_m1][j]->dot(*inner_product_storage_vector);
1063  }
1064  } // end for j
1065  } // end for i
1066  q++;
1067  } // end for q_m2
1068  } // end for q_m1
1069 
1070 
1071  for (unsigned int i=(RB_size-delta_N); i<RB_size; i++)
1072  {
1073  for (unsigned int j=0; j<RB_size; j++)
1074  {
1075  for (unsigned int q_a=0; q_a<Q_a; q_a++)
1076  {
1077  for (unsigned int q_m=0; q_m<Q_m; q_m++)
1078  {
1080  *trans_rb_eval.M_q_representor[q_m][j]);
1081 
1082  trans_rb_eval.Aq_Mq_representor_innerprods[q_a][q_m][i][j] =
1083  trans_rb_eval.Aq_representor[q_a][i]->dot(*inner_product_storage_vector);
1084 
1085  if (i != j)
1086  {
1088  *trans_rb_eval.M_q_representor[q_m][i]);
1089 
1090  trans_rb_eval.Aq_Mq_representor_innerprods[q_a][q_m][j][i] =
1091  trans_rb_eval.Aq_representor[q_a][j]->dot(*inner_product_storage_vector);
1092  }
1093  } // end for q_m
1094  } // end for q_a
1095  } // end for j
1096  } // end for i
1097  } // end if (compute_inner_products)
1098 }
std::vector< std::unique_ptr< NumericVector< Number > > > Fq_representor
Vector storing the residual representors associated with the right-hand side.
bool assert_convergence
A boolean flag to indicate whether to check for proper convergence after each solve.
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
std::string get_timestamp()
Definition: timestamp.C:37
NumericVector< Number > * rhs
The system matrix.
const Parallel::Communicator & comm() const
bool is_quiet() const
Is the system in quiet mode?
std::unique_ptr< SparseMatrix< Number > > inner_product_matrix
The inner product matrix.
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
virtual void zero()=0
Set all entries to zero.
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
virtual void solve_for_matrix_and_rhs(LinearSolver< Number > &input_solver, SparseMatrix< Number > &input_matrix, NumericVector< Number > &input_rhs)
Assembles & solves the linear system A*x=b for the specified matrix input_matrix and right-hand side ...
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object that that belongs to rb_eval.
unsigned int n_linear_iterations() const
virtual void update_residual_terms(bool compute_inner_products=true)
Compute the terms that are combined ‘online’ to determine the dual norm of the residual.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
unsigned int delta_N
The number of basis functions that we add at each greedy step.
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
void check_convergence(LinearSolver< Number > &input_solver)
Check if the linear solver reports convergence.
std::unique_ptr< LinearSolver< Number > > inner_product_solver
We store an extra linear solver object which we can optionally use for solving all systems in which t...
OStreamProxy out
virtual unsigned int get_n_basis_functions() const
Get the current number of basis functions.
SparseMatrix< Number > * get_non_dirichlet_inner_product_matrix_if_avail()
Get the non-Dirichlet inner-product matrix if it&#39;s available, otherwise get the inner-product matrix ...
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.
std::vector< std::unique_ptr< SparseMatrix< Number > > > M_q_vector
Vector storing the Q_m matrices from the mass operator.

◆ update_system()

void TransientRBConstruction::update_system ( )
overrideprotectedvirtual

Update the system after enriching the RB space.

Reimplemented from libMesh::RBConstruction.

Definition at line 867 of file transient_rb_construction.C.

References libMesh::RBConstruction::get_delta_N(), libMesh::out, update_RB_initial_condition_all_N(), and libMesh::RBConstruction::update_system().

Referenced by add_IC_to_RB_space(), and enrich_RB_space().

868 {
869  // If delta_N is set to zero, there is nothing to update
870  if (get_delta_N() == 0)
871  return;
872 
874 
875  libMesh::out << "Updating RB initial conditions" << std::endl;
877 }
void update_RB_initial_condition_all_N()
Compute the L2 projection of the initial condition onto the RB space for 1 <= N <= RB_size and store ...
virtual void update_system()
Update the system after enriching the RB space; this calls a series of functions to update the system...
unsigned int get_delta_N() const
Get delta_N, the number of basis functions we add to the RB space per iteration of the greedy algorit...
OStreamProxy out

◆ user_assembly()

void libMesh::System::user_assembly ( )
virtualinherited

Calls user's attached assembly function, or is overridden by the user in derived classes.

Definition at line 2259 of file system.C.

References libMesh::System::_assemble_system_function, libMesh::System::_assemble_system_object, libMesh::System::_equation_systems, libMesh::System::Assembly::assemble(), and libMesh::System::name().

Referenced by libMesh::System::assemble().

2260 {
2261  // Call the user-provided assembly function,
2262  // if it was provided
2263  if (_assemble_system_function != nullptr)
2265 
2266  // ...or the user-provided assembly object.
2267  else if (_assemble_system_object != nullptr)
2269 }
Assembly * _assemble_system_object
Object that assembles the system.
Definition: system.h:2070
virtual void assemble()=0
Assembly function.
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261
void(* _assemble_system_function)(EquationSystems &es, const std::string &name)
Function that assembles the system.
Definition: system.h:2064

◆ user_constrain()

void libMesh::System::user_constrain ( )
virtualinherited

Calls user's attached constraint function, or is overridden by the user in derived classes.

Definition at line 2273 of file system.C.

References libMesh::System::_constrain_system_function, libMesh::System::_constrain_system_object, libMesh::System::_equation_systems, libMesh::System::Constraint::constrain(), and libMesh::System::name().

Referenced by libMesh::System::reinit_constraints().

2274 {
2275  // Call the user-provided constraint function,
2276  // if it was provided
2277  if (_constrain_system_function!= nullptr)
2279 
2280  // ...or the user-provided constraint object.
2281  else if (_constrain_system_object != nullptr)
2283 }
void(* _constrain_system_function)(EquationSystems &es, const std::string &name)
Function to impose constraints.
Definition: system.h:2075
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
virtual void constrain()=0
Constraint function.
const std::string & name() const
Definition: system.h:2261

◆ user_initialization()

void libMesh::System::user_initialization ( )
virtualinherited

Calls user's attached initialization function, or is overridden by the user in derived classes.

Definition at line 2245 of file system.C.

References libMesh::System::_equation_systems, libMesh::System::_init_system_function, libMesh::System::_init_system_object, libMesh::System::Initialization::initialize(), and libMesh::System::name().

Referenced by libMesh::System::init(), libMesh::NewmarkSystem::initial_conditions(), and libMesh::System::reinit_mesh().

2246 {
2247  // Call the user-provided initialization function,
2248  // if it was provided
2249  if (_init_system_function != nullptr)
2250  this->_init_system_function (_equation_systems, this->name());
2251 
2252  // ...or the user-provided initialization object.
2253  else if (_init_system_object != nullptr)
2255 }
virtual void initialize()=0
Initialization function.
Initialization * _init_system_object
Object that initializes the system.
Definition: system.h:2059
void(* _init_system_function)(EquationSystems &es, const std::string &name)
Function that initializes the system.
Definition: system.h:2053
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261

◆ user_QOI()

void libMesh::System::user_QOI ( const QoISet qoi_indices)
virtualinherited

Calls user's attached quantity of interest function, or is overridden by the user in derived classes.

Definition at line 2287 of file system.C.

References libMesh::System::_equation_systems, libMesh::System::_qoi_evaluate_function, libMesh::System::_qoi_evaluate_object, libMesh::System::name(), and libMesh::System::QOI::qoi().

Referenced by libMesh::System::assemble_qoi().

2288 {
2289  // Call the user-provided quantity of interest function,
2290  // if it was provided
2291  if (_qoi_evaluate_function != nullptr)
2292  this->_qoi_evaluate_function(_equation_systems, this->name(), qoi_indices);
2293 
2294  // ...or the user-provided QOI function object.
2295  else if (_qoi_evaluate_object != nullptr)
2296  this->_qoi_evaluate_object->qoi(qoi_indices);
2297 }
void(* _qoi_evaluate_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices)
Function to evaluate quantity of interest.
Definition: system.h:2086
virtual void qoi(const QoISet &qoi_indices)=0
Quantity of interest function.
QOI * _qoi_evaluate_object
Object to compute quantities of interest.
Definition: system.h:2093
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261

◆ user_QOI_derivative()

void libMesh::System::user_QOI_derivative ( const QoISet qoi_indices = QoISet(),
bool  include_liftfunc = true,
bool  apply_constraints = true 
)
virtualinherited

Calls user's attached quantity of interest derivative function, or is overridden by the user in derived classes.

Definition at line 2301 of file system.C.

References libMesh::System::_equation_systems, libMesh::System::_qoi_evaluate_derivative_function, libMesh::System::_qoi_evaluate_derivative_object, libMesh::System::name(), and libMesh::System::QOIDerivative::qoi_derivative().

Referenced by libMesh::System::assemble_qoi_derivative().

2304 {
2305  // Call the user-provided quantity of interest derivative,
2306  // if it was provided
2307  if (_qoi_evaluate_derivative_function != nullptr)
2309  (_equation_systems, this->name(), qoi_indices, include_liftfunc,
2310  apply_constraints);
2311 
2312  // ...or the user-provided QOI derivative function object.
2313  else if (_qoi_evaluate_derivative_object != nullptr)
2315  (qoi_indices, include_liftfunc, apply_constraints);
2316 }
QOIDerivative * _qoi_evaluate_derivative_object
Object to compute derivatives of quantities of interest.
Definition: system.h:2107
virtual void qoi_derivative(const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)=0
Quantity of interest derivative function.
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261
void(* _qoi_evaluate_derivative_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
Function to evaluate quantity of interest derivative.
Definition: system.h:2098

◆ variable()

const Variable & libMesh::System::variable ( unsigned int  var) const
inlineinherited

Return a constant reference to Variable var.

Definition at line 2377 of file system.h.

References libMesh::System::_variables.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DifferentiableSystem::add_second_order_dot_vars(), libMesh::System::add_variable(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::DifferentiableSystem::have_first_order_scalar_vars(), libMesh::DifferentiableSystem::have_second_order_scalar_vars(), main(), libMesh::DifferentiablePhysics::nonlocal_mass_residual(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SortAndCopy::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::System::read_parallel_data(), libMesh::System::read_SCALAR_dofs(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::System::write_header(), libMesh::Nemesis_IO_Helper::write_nodal_solution(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_vector(), and libMesh::System::write_serialized_vectors().

2378 {
2379  libmesh_assert_less (i, _variables.size());
2380 
2381  return _variables[i];
2382 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ variable_group()

const VariableGroup & libMesh::System::variable_group ( unsigned int  vg) const
inlineinherited

Return a constant reference to VariableGroup vg.

Definition at line 2387 of file system.h.

References libMesh::System::_variable_groups.

Referenced by libMesh::FEMSystem::assembly(), libMesh::System::get_info(), and libMesh::System::init_data().

2388 {
2389  libmesh_assert_less (vg, _variable_groups.size());
2390 
2391  return _variable_groups[vg];
2392 }
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145

◆ variable_name()

const std::string & libMesh::System::variable_name ( const unsigned int  i) const
inlineinherited

◆ variable_number()

unsigned int libMesh::System::variable_number ( std::string_view  var) const
inherited
Returns
The variable number associated with the user-specified variable named var.

Definition at line 1557 of file system.C.

References libMesh::System::_variable_numbers, libMesh::System::_variables, and libMesh::System::name().

Referenced by libMesh::ExactSolution::_compute_error(), alternative_fe_assembly(), LinearElasticity::assemble(), HDGProblem::assemble(), AssembleOptimization::assemble_A_and_F(), assemble_divgrad(), assemble_elasticity(), assemble_matrix_and_rhs(), assemble_shell(), assemble_stokes(), compute_enriched_soln(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::GMVIO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExactErrorEstimator::estimate_error(), fe_assembly(), libMesh::ExactErrorEstimator::find_squared_element_error(), CoupledSystemQoI::init_context(), LargeDeformationElasticity::jacobian(), line_print(), main(), LinearElasticityWithContact::move_mesh(), libMesh::System::read_header(), LargeDeformationElasticity::residual(), LinearElasticityWithContact::residual_and_jacobian(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), OverlappingTestBase::setup_coupling_matrix(), libMesh::DTKAdapter::update_variable_values(), libMesh::System::variable_scalar_number(), libMesh::System::variable_type(), libMesh::EnsightIO::write_scalar_ascii(), and libMesh::EnsightIO::write_vector_ascii().

1558 {
1559  auto var_num = libmesh_map_find(_variable_numbers, var);
1560  libmesh_assert_equal_to (_variables[var_num].name(), var);
1561  return var_num;
1562 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
const std::string & name() const
Definition: system.h:2261

◆ variable_scalar_number() [1/2]

unsigned int libMesh::System::variable_scalar_number ( std::string_view  var,
unsigned int  component 
) const
inlineinherited
Returns
An index, starting from 0 for the first component of the first variable, and incrementing for each component of each (potentially vector-valued) variable in the system in order. For systems with only scalar-valued variables, this will be the same as variable_number(var)

Irony: currently our only non-scalar-valued variable type is SCALAR.

Definition at line 2408 of file system.h.

References libMesh::System::variable_number().

Referenced by libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), libMesh::ExactErrorEstimator::find_squared_element_error(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), and libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()().

2410 {
2411  return variable_scalar_number(this->variable_number(var), component);
2412 }
unsigned int variable_scalar_number(std::string_view var, unsigned int component) const
Definition: system.h:2408
unsigned int variable_number(std::string_view var) const
Definition: system.C:1557

◆ variable_scalar_number() [2/2]

unsigned int libMesh::System::variable_scalar_number ( unsigned int  var_num,
unsigned int  component 
) const
inlineinherited
Returns
An index, starting from 0 for the first component of the first variable, and incrementing for each component of each (potentially vector-valued) variable in the system in order. For systems with only scalar-valued variables, this will be the same as var_num

Irony: currently our only non-scalar-valued variable type is SCALAR.

Definition at line 2418 of file system.h.

References libMesh::System::_variables.

2420 {
2421  return _variables[var_num].first_scalar_number() + component;
2422 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ variable_type() [1/2]

const FEType & libMesh::System::variable_type ( const unsigned int  i) const
inlineinherited

◆ variable_type() [2/2]

const FEType & libMesh::System::variable_type ( std::string_view  var) const
inlineinherited
Returns
The finite element type for variable var.

Definition at line 2437 of file system.h.

References libMesh::System::_variables, and libMesh::System::variable_number().

2438 {
2439  return _variables[this->variable_number(var)].type();
2440 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
unsigned int variable_number(std::string_view var) const
Definition: system.C:1557

◆ vector_is_adjoint()

int libMesh::System::vector_is_adjoint ( std::string_view  vec_name) const
inherited
Returns
The integer describing whether the vector identified by vec_name represents a solution from an adjoint (non-negative) or the primal (-1) space.

Definition at line 1120 of file system.C.

References libMesh::System::_vector_is_adjoint, and libMesh::libmesh_assert().

Referenced by libMesh::InterMeshProjection::project_system_vectors(), and libMesh::System::restrict_vectors().

1121 {
1122  libmesh_assert(_vector_is_adjoint.find(vec_name) !=
1123  _vector_is_adjoint.end());
1124 
1125  return _vector_is_adjoint.find(vec_name)->second;
1126 }
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176
libmesh_assert(ctx)

◆ vector_name() [1/2]

const std::string & libMesh::System::vector_name ( const unsigned int  vec_num) const
inherited
Returns
The name of this system's additional vector number vec_num (where the vectors are counted starting with 0).

Definition at line 958 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), and main().

959 {
960  // If we don't have that many vectors, throw an error
961  libmesh_assert_less(vec_num, _vectors.size());
962 
963  // Otherwise return a reference to the vec_num'th vector name
964  auto it = vectors_begin();
965  std::advance(it, vec_num);
966  return it->first;
967 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ vector_name() [2/2]

const std::string & libMesh::System::vector_name ( const NumericVector< Number > &  vec_reference) const
inherited
Returns
The name of a system vector, given a reference to that vector

Definition at line 969 of file system.C.

References libMesh::System::_vectors, libMesh::NumericVector< T >::get(), libMesh::libmesh_assert(), libMesh::System::vectors_begin(), and libMesh::System::vectors_end().

970 {
971  // Linear search for a vector whose pointer matches vec_reference
972  auto it = std::find_if(vectors_begin(), vectors_end(),
973  [&vec_reference](const decltype(_vectors)::value_type & pr)
974  { return &vec_reference == pr.second.get(); });
975 
976  // Before returning, make sure we didn't loop till the end and not find any match
977  libmesh_assert (it != vectors_end());
978 
979  // Return the string associated with the current vector
980  return it->first;
981 }
vectors_iterator vectors_end()
End of vectors container.
Definition: system.h:2495
virtual void get(const std::vector< numeric_index_type > &index, T *values) const
Access multiple components at once.
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483
libmesh_assert(ctx)

◆ vector_preservation()

bool libMesh::System::vector_preservation ( std::string_view  vec_name) const
inherited
Returns
The boolean describing whether the vector identified by vec_name should be "preserved": projected to new meshes, saved, etc.

Definition at line 1097 of file system.C.

References libMesh::System::_vector_projections.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::MemoryHistoryData::store_vectors(), SystemsTest::testAddVectorProjChange(), SystemsTest::testAddVectorTypeChange(), and SystemsTest::testPostInitAddVectorTypeChange().

1098 {
1099  if (_vector_projections.find(vec_name) == _vector_projections.end())
1100  return false;
1101 
1102  return _vector_projections.find(vec_name)->second;
1103 }
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ vectors_begin() [1/2]

System::vectors_iterator libMesh::System::vectors_begin ( )
inlineinherited

Beginning of vectors container.

Definition at line 2483 of file system.h.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_vector(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::System::request_vector(), libMesh::MemoryHistoryData::store_vectors(), and libMesh::System::vector_name().

2484 {
2485  return _vectors.begin();
2486 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ vectors_begin() [2/2]

System::const_vectors_iterator libMesh::System::vectors_begin ( ) const
inlineinherited

Beginning of vectors container.

Definition at line 2489 of file system.h.

References libMesh::System::_vectors.

2490 {
2491  return _vectors.begin();
2492 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ vectors_end() [1/2]

System::vectors_iterator libMesh::System::vectors_end ( )
inlineinherited

End of vectors container.

Definition at line 2495 of file system.h.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::MemoryHistoryData::store_vectors(), and libMesh::System::vector_name().

2496 {
2497  return _vectors.end();
2498 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ vectors_end() [2/2]

System::const_vectors_iterator libMesh::System::vectors_end ( ) const
inlineinherited

End of vectors container.

Definition at line 2501 of file system.h.

References libMesh::System::_vectors.

2502 {
2503  return _vectors.end();
2504 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ weighted_sensitivity_adjoint_solve()

std::pair< unsigned int, Real > libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve ( const ParameterVector parameters,
const ParameterVector weights,
const QoISet qoi_indices = QoISet() 
)
overridevirtualinherited

Assembles & solves the linear system(s) (dR/du)^T*z_w = sum(w_p*(d^2q/dudp - d^2R/dudp*z)), for those parameters p contained within parameters, weighted by the values w_p found within weights.

Assumes that adjoint_solve has already calculated z for each qoi in qoi_indices.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

Reimplemented from libMesh::System.

Definition at line 220 of file implicit_system.C.

References libMesh::System::add_weighted_sensitivity_adjoint_solution(), libMesh::ExplicitSystem::assemble_qoi_derivative(), libMesh::ImplicitSystem::assembly(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::ParameterVector::deep_copy(), libMesh::DofMap::enforce_constraints_exactly(), libMesh::System::get_adjoint_rhs(), libMesh::System::get_adjoint_solution(), libMesh::System::get_dof_map(), libMesh::ImplicitSystem::get_linear_solve_parameters(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::SparseMatrix< T >::get_transpose(), libMesh::System::get_weighted_sensitivity_adjoint_solution(), libMesh::DofMap::has_adjoint_dirichlet_boundaries(), libMesh::QoISet::has_index(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::ImplicitSystem::matrix, libMesh::System::n_qois(), libMesh::Real, libMesh::ExplicitSystem::rhs, libMesh::LinearSolver< T >::solve(), libMesh::TOLERANCE, libMesh::ParameterVector::value_copy(), libMesh::SparseMatrix< T >::vector_mult_add(), and libMesh::NumericVector< T >::zero_clone().

Referenced by libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

223 {
224  // Log how long the linear solve takes.
225  LOG_SCOPE("weighted_sensitivity_adjoint_solve()", "ImplicitSystem");
226 
227  // We currently get partial derivatives via central differencing
228  const Real delta_p = TOLERANCE;
229 
230  ParameterVector & parameters =
231  const_cast<ParameterVector &>(parameters_in);
232 
233  // The forward system should now already be solved.
234  // The adjoint system should now already be solved.
235  // Now we're assembling a weighted sum of adjoint-adjoint systems:
236  //
237  // dR/du (u, sum_l(w_l*z^l)) = sum_l(w_l*(Q''_ul - R''_ul (u, z)))
238 
239  // FIXME: The derivation here does not yet take adjoint boundary
240  // conditions into account.
241 #ifdef LIBMESH_ENABLE_DIRICHLET
242  for (auto i : make_range(this->n_qois()))
243  if (qoi_indices.has_index(i))
245 #endif
246 
247  // We'll assemble the rhs first, because the R'' term will require
248  // perturbing the jacobian
249 
250  // We'll use temporary rhs vectors, because we haven't (yet) found
251  // any good reasons why users might want to save these:
252 
253  std::vector<std::unique_ptr<NumericVector<Number>>> temprhs(this->n_qois());
254  for (auto i : make_range(this->n_qois()))
255  if (qoi_indices.has_index(i))
256  temprhs[i] = this->rhs->zero_clone();
257 
258  // We approximate the _l partial derivatives via a central
259  // differencing perturbation in the w_l direction:
260  //
261  // sum_l(w_l*v_l) ~= (v(p + dp*w_l*e_l) - v(p - dp*w_l*e_l))/(2*dp)
262 
263  // PETSc doesn't implement SGEMX, so neither does NumericVector,
264  // so we want to avoid calculating f -= R'*z. We'll thus evaluate
265  // the above equation by first adding -v(p+dp...), then multiplying
266  // the intermediate result vectors by -1, then adding -v(p-dp...),
267  // then finally dividing by 2*dp.
268 
269  ParameterVector oldparameters, parameterperturbation;
270  parameters.deep_copy(oldparameters);
271  weights.deep_copy(parameterperturbation);
272  parameterperturbation *= delta_p;
273  parameters += parameterperturbation;
274 
275  this->assembly(false, true);
276  this->matrix->close();
277 
278  // Take the discrete adjoint, so that we can calculate R_u(u,z) with
279  // a matrix-vector product of R_u and z.
281 
282  this->assemble_qoi_derivative(qoi_indices,
283  /* include_liftfunc = */ false,
284  /* apply_constraints = */ true);
285  for (auto i : make_range(this->n_qois()))
286  if (qoi_indices.has_index(i))
287  {
288  this->get_adjoint_rhs(i).close();
289  *(temprhs[i]) -= this->get_adjoint_rhs(i);
290  this->matrix->vector_mult_add(*(temprhs[i]), this->get_adjoint_solution(i));
291  *(temprhs[i]) *= -1.0;
292  }
293 
294  oldparameters.value_copy(parameters);
295  parameterperturbation *= -1.0;
296  parameters += parameterperturbation;
297 
298  this->assembly(false, true);
299  this->matrix->close();
301 
302  this->assemble_qoi_derivative(qoi_indices,
303  /* include_liftfunc = */ false,
304  /* apply_constraints = */ true);
305  for (auto i : make_range(this->n_qois()))
306  if (qoi_indices.has_index(i))
307  {
308  this->get_adjoint_rhs(i).close();
309  *(temprhs[i]) -= this->get_adjoint_rhs(i);
310  this->matrix->vector_mult_add(*(temprhs[i]), this->get_adjoint_solution(i));
311  *(temprhs[i]) /= (2.0*delta_p);
312  }
313 
314  // Finally, assemble the jacobian at the non-perturbed parameter
315  // values. Ignore assemble_before_solve; if we had a good
316  // non-perturbed matrix before we've already overwritten it.
317  oldparameters.value_copy(parameters);
318 
319  // if (this->assemble_before_solve)
320  {
321  // Build the Jacobian
322  this->assembly(false, true);
323  this->matrix->close();
324 
325  // Take the discrete adjoint
327  }
328 
329  // The weighted adjoint-adjoint problem is linear
330  LinearSolver<Number> * solver = this->get_linear_solver();
331 
332  // Our iteration counts and residuals will be sums of the individual
333  // results
334  std::pair<unsigned int, Real> solver_params =
336  std::pair<unsigned int, Real> totalrval = std::make_pair(0,0.0);
337 
338  for (auto i : make_range(this->n_qois()))
339  if (qoi_indices.has_index(i))
340  {
341  const std::pair<unsigned int, Real> rval =
342  solver->solve (*matrix, this->add_weighted_sensitivity_adjoint_solution(i),
343  *(temprhs[i]),
344  double(solver_params.second),
345  solver_params.first);
346 
347  totalrval.first += rval.first;
348  totalrval.second += rval.second;
349  }
350 
351  // The linear solver may not have fit our constraints exactly
352 #ifdef LIBMESH_ENABLE_CONSTRAINTS
353  for (auto i : make_range(this->n_qois()))
354  if (qoi_indices.has_index(i))
357  /* homogeneous = */ true);
358 #endif
359 
360  return totalrval;
361 }
static constexpr Real TOLERANCE
virtual std::pair< unsigned int, Real > get_linear_solve_parameters() const
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
virtual std::unique_ptr< NumericVector< T > > zero_clone() const =0
NumericVector< Number > * rhs
The system matrix.
virtual LinearSolver< Number > * get_linear_solver() const
NumericVector< Number > & add_weighted_sensitivity_adjoint_solution(unsigned int i=0)
Definition: system.C:1213
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
bool has_adjoint_dirichlet_boundaries(unsigned int q) const
libmesh_assert(ctx)
template class LIBMESH_EXPORT LinearSolver< Number >
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void vector_mult_add(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and adds the result to the NumericVector dest...
SparseMatrix< Number > * matrix
The system matrix.
virtual void get_transpose(SparseMatrix< T > &dest) const =0
Copies the transpose of the matrix into dest, which may be *this.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
virtual void assemble_qoi_derivative(const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true) override
Prepares adjoint_rhs for quantity of interest derivative assembly, then calls user qoi derivative fun...
NumericVector< Number > & get_adjoint_solution(unsigned int i=0)
Definition: system.C:1193
const DofMap & get_dof_map() const
Definition: system.h:2293
NumericVector< Number > & get_weighted_sensitivity_adjoint_solution(unsigned int i=0)
Definition: system.C:1225
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274
NumericVector< Number > & get_adjoint_rhs(unsigned int i=0)
Definition: system.C:1255

◆ weighted_sensitivity_solve()

std::pair< unsigned int, Real > libMesh::ImplicitSystem::weighted_sensitivity_solve ( const ParameterVector parameters,
const ParameterVector weights 
)
overridevirtualinherited

Assembles & solves the linear system(s) (dR/du)*u_w = sum(w_p*-dR/dp), for those parameters p contained within parameters weighted by the values w_p found within weights.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

Reimplemented from libMesh::System.

Definition at line 366 of file implicit_system.C.

References libMesh::System::add_weighted_sensitivity_solution(), libMesh::ImplicitSystem::assembly(), libMesh::NumericVector< T >::clone(), libMesh::NumericVector< T >::close(), libMesh::SparseMatrix< T >::close(), libMesh::ParameterVector::deep_copy(), libMesh::DofMap::enforce_constraints_exactly(), libMesh::System::get_dof_map(), libMesh::ImplicitSystem::get_linear_solve_parameters(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::System::get_weighted_sensitivity_solution(), libMesh::ImplicitSystem::matrix, libMesh::Real, libMesh::ExplicitSystem::rhs, libMesh::LinearSolver< T >::solve(), libMesh::TOLERANCE, and libMesh::ParameterVector::value_copy().

Referenced by libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

368 {
369  // Log how long the linear solve takes.
370  LOG_SCOPE("weighted_sensitivity_solve()", "ImplicitSystem");
371 
372  // We currently get partial derivatives via central differencing
373  const Real delta_p = TOLERANCE;
374 
375  ParameterVector & parameters =
376  const_cast<ParameterVector &>(parameters_in);
377 
378  // The forward system should now already be solved.
379 
380  // Now we're assembling a weighted sum of sensitivity systems:
381  //
382  // dR/du (u, v)(sum(w_l*u'_l)) = -sum_l(w_l*R'_l (u, v)) forall v
383 
384  // We'll assemble the rhs first, because the R' term will require
385  // perturbing the system, and some applications may not be able to
386  // assemble a perturbed residual without simultaneously constructing
387  // a perturbed jacobian.
388 
389  // We approximate the _l partial derivatives via a central
390  // differencing perturbation in the w_l direction:
391  //
392  // sum_l(w_l*v_l) ~= (v(p + dp*w_l*e_l) - v(p - dp*w_l*e_l))/(2*dp)
393 
394  ParameterVector oldparameters, parameterperturbation;
395  parameters.deep_copy(oldparameters);
396  weights.deep_copy(parameterperturbation);
397  parameterperturbation *= delta_p;
398  parameters += parameterperturbation;
399 
400  this->assembly(true, false, true);
401  this->rhs->close();
402 
403  std::unique_ptr<NumericVector<Number>> temprhs = this->rhs->clone();
404 
405  oldparameters.value_copy(parameters);
406  parameterperturbation *= -1.0;
407  parameters += parameterperturbation;
408 
409  this->assembly(true, false, true);
410  this->rhs->close();
411 
412  *temprhs -= *(this->rhs);
413  *temprhs /= (2.0*delta_p);
414 
415  // Finally, assemble the jacobian at the non-perturbed parameter
416  // values
417  oldparameters.value_copy(parameters);
418 
419  // Build the Jacobian
420  this->assembly(false, true);
421  this->matrix->close();
422 
423  // The weighted sensitivity problem is linear
424  LinearSolver<Number> * solver = this->get_linear_solver();
425 
426  std::pair<unsigned int, Real> solver_params =
428 
429  const std::pair<unsigned int, Real> rval =
430  solver->solve (*matrix, this->add_weighted_sensitivity_solution(),
431  *temprhs,
432  double(solver_params.second),
433  solver_params.first);
434 
435  // The linear solver may not have fit our constraints exactly
436 #ifdef LIBMESH_ENABLE_CONSTRAINTS
438  (*this, &this->get_weighted_sensitivity_solution(),
439  /* homogeneous = */ true);
440 #endif
441 
442  return rval;
443 }
static constexpr Real TOLERANCE
virtual std::pair< unsigned int, Real > get_linear_solve_parameters() const
NumericVector< Number > * rhs
The system matrix.
virtual std::unique_ptr< NumericVector< T > > clone() const =0
virtual LinearSolver< Number > * get_linear_solver() const
NumericVector< Number > & add_weighted_sensitivity_solution()
Definition: system.C:1160
NumericVector< Number > & get_weighted_sensitivity_solution()
Definition: system.C:1167
virtual void assembly(bool, bool, bool=false, bool=false)
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
template class LIBMESH_EXPORT LinearSolver< Number >
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
The system matrix.
const DofMap & get_dof_map() const
Definition: system.h:2293
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274

◆ write_header()

void libMesh::System::write_header ( Xdr io,
std::string_view  version,
const bool  write_additional_data 
) const
inherited

Writes the basic data header for this System.

This method implements the output of a System object, embedded in the output of an EquationSystems<T_sys>. This warrants some documentation. The output of this part consists of 5 sections:

for this system

5.) The number of variables in the system (unsigned int)

for each variable in the system

6.) The name of the variable (string)

6.1.) subdomain where the variable lives

7.) Combined in an FEType:

  • The approximation order(s) of the variable (Order Enum, cast to int/s)
  • The finite element family/ies of the variable (FEFamily Enum, cast to int/s)

end variable loop

8.) The number of additional vectors (unsigned int),

for each additional vector in the system object

9.) the name of the additional vector (string)

end system

Definition at line 1267 of file system_io.C.

References libMesh::System::_vector_projections, libMesh::System::_vectors, libMesh::Variable::active_subdomains(), libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_mesh(), libMesh::FEType::inf_map, libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_vars(), libMesh::System::n_vectors(), libMesh::System::name(), libMesh::FEType::order, libMesh::ParallelObject::processor_id(), libMesh::FEType::radial_family, libMesh::FEType::radial_order, libMesh::System::variable(), libMesh::System::variable_name(), libMesh::System::variable_type(), and libMesh::Xdr::writing().

Referenced by libMesh::RBEvaluation::write_out_vectors().

1270 {
1304  libmesh_assert (io.writing());
1305 
1306 
1307  // Only write the header information
1308  // if we are processor 0.
1309  if (this->get_mesh().processor_id() != 0)
1310  return;
1311 
1312  std::string comment;
1313 
1314  // 5.)
1315  // Write the number of variables in the system
1316 
1317  {
1318  // set up the comment
1319  comment = "# No. of Variables in System \"";
1320  comment += this->name();
1321  comment += "\"";
1322 
1323  unsigned int nv = this->n_vars();
1324  io.data (nv, comment);
1325  }
1326 
1327 
1328  for (auto var : make_range(this->n_vars()))
1329  {
1330  // 6.)
1331  // Write the name of the var-th variable
1332  {
1333  // set up the comment
1334  comment = "# Name, Variable No. ";
1335  comment += std::to_string(var);
1336  comment += ", System \"";
1337  comment += this->name();
1338  comment += "\"";
1339 
1340  std::string var_name = this->variable_name(var);
1341  io.data (var_name, comment);
1342  }
1343 
1344  // 6.1.) Variable subdomains
1345  {
1346  // set up the comment
1347  comment = "# Subdomains, Variable \"";
1348  comment += this->variable_name(var);
1349  comment += "\", System \"";
1350  comment += this->name();
1351  comment += "\"";
1352 
1353  const std::set<subdomain_id_type> & domains = this->variable(var).active_subdomains();
1354  std::vector<subdomain_id_type> domain_array;
1355  domain_array.assign(domains.begin(), domains.end());
1356  io.data (domain_array, comment);
1357  }
1358 
1359  // 7.)
1360  // Write the approximation order of the var-th variable
1361  // in this system
1362  {
1363  // set up the comment
1364  comment = "# Approximation Order, Variable \"";
1365  comment += this->variable_name(var);
1366  comment += "\", System \"";
1367  comment += this->name();
1368  comment += "\"";
1369 
1370  int order = static_cast<int>(this->variable_type(var).order);
1371  io.data (order, comment);
1372  }
1373 
1374 
1375 #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
1376 
1377  // do the same for radial_order
1378  {
1379  comment = "# Radial Approximation Order, Variable \"";
1380  comment += this->variable_name(var);
1381  comment += "\", System \"";
1382  comment += this->name();
1383  comment += "\"";
1384 
1385  int rad_order = static_cast<int>(this->variable_type(var).radial_order);
1386  io.data (rad_order, comment);
1387  }
1388 
1389 #endif
1390 
1391  // Write the Finite Element type of the var-th variable
1392  // in this System
1393  {
1394  // set up the comment
1395  comment = "# FE Family, Variable \"";
1396  comment += this->variable_name(var);
1397  comment += "\", System \"";
1398  comment += this->name();
1399  comment += "\"";
1400 
1401  const FEType & type = this->variable_type(var);
1402  int fam = static_cast<int>(type.family);
1403  io.data (fam, comment);
1404 
1405 #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
1406 
1407  comment = "# Radial FE Family, Variable \"";
1408  comment += this->variable_name(var);
1409  comment += "\", System \"";
1410  comment += this->name();
1411  comment += "\"";
1412 
1413  int radial_fam = static_cast<int>(type.radial_family);
1414  io.data (radial_fam, comment);
1415 
1416  comment = "# Infinite Mapping Type, Variable \"";
1417  comment += this->variable_name(var);
1418  comment += "\", System \"";
1419  comment += this->name();
1420  comment += "\"";
1421 
1422  int i_map = static_cast<int>(type.inf_map);
1423  io.data (i_map, comment);
1424 #endif
1425  }
1426  } // end of the variable loop
1427 
1428  // 8.)
1429  // Write the number of additional vectors in the System.
1430  // If write_additional_data==false, then write zero for
1431  // the number of additional vectors.
1432  {
1433  {
1434  // set up the comment
1435  comment = "# No. of Additional Vectors, System \"";
1436  comment += this->name();
1437  comment += "\"";
1438 
1439  unsigned int nvecs = write_additional_data ? this->n_vectors () : 0;
1440  io.data (nvecs, comment);
1441  }
1442 
1443  if (write_additional_data)
1444  {
1445  unsigned int cnt=0;
1446  for (const auto & [vec_name, vec] : _vectors)
1447  {
1448  // 9.)
1449  // write the name of the cnt-th additional vector
1450  const std::string dth_vector = std::to_string(cnt++)+"th vector";
1451  comment = "# Name of " + dth_vector;
1452  std::string nonconst_vec_name = vec_name; // Stupid XDR API
1453 
1454  io.data (nonconst_vec_name, comment);
1455  int vec_projection = _vector_projections.at(vec_name);
1456  comment = "# Whether to do projections for " + dth_vector;
1457  io.data (vec_projection, comment);
1458  int vec_type = vec->type();
1459  comment = "# Parallel type of " + dth_vector;
1460  io.data (vec_type, comment);
1461  }
1462  }
1463  }
1464 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
OrderWrapper radial_order
The approximation order in radial direction of the infinite element.
Definition: fe_type.h:240
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
OrderWrapper order
The approximation order of the element.
Definition: fe_type.h:201
const MeshBase & get_mesh() const
Definition: system.h:2277
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
unsigned int n_vectors() const
Definition: system.h:2477
libmesh_assert(ctx)
const std::string & variable_name(const unsigned int i) const
Definition: system.h:2397
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
const std::string & name() const
Definition: system.h:2261
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ write_parallel_data()

void libMesh::System::write_parallel_data ( Xdr io,
const bool  write_additional_data 
) const
inherited

Writes additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh. This method will create an individual file for each processor in the simulation where the local solution components for that processor will be stored.

This method implements the output of the vectors contained in this System object, embedded in the output of an EquationSystems<T_sys>.

9.) The global solution vector, re-ordered to be node-major (More on this later.)

for each additional vector in the object

10.) The global additional vector, re-ordered to be node-major (More on this later.)

Note that the actual IO is handled through the Xdr class (to be renamed later?) which provides a uniform interface to both the XDR (eXternal Data Representation) interface and standard ASCII output. Thus this one section of code will read XDR or ASCII files with no changes.

Definition at line 1468 of file system_io.C.

References libMesh::System::_vectors, libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::DofObject::invalid_id, libMesh::libmesh_assert(), libMesh::make_range(), libMesh::ParallelObject::n_processors(), libMesh::System::n_vars(), libMesh::System::name(), libMesh::System::number(), libMesh::ParallelObject::processor_id(), libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::System::solution, libMesh::Variable::type(), libMesh::System::variable(), and libMesh::Xdr::writing().

1470 {
1490  // PerfLog pl("IO Performance",false);
1491  // pl.push("write_parallel_data");
1492  // std::size_t total_written_size = 0;
1493 
1494  std::string comment;
1495 
1496  libmesh_assert (io.writing());
1497 
1498  std::vector<Number> io_buffer; io_buffer.reserve(this->solution->local_size());
1499 
1500  // build the ordered nodes and element maps.
1501  // when writing/reading parallel files we need to iterate
1502  // over our nodes/elements in order of increasing global id().
1503  // however, this is not guaranteed to be ordering we obtain
1504  // by using the node_iterators/element_iterators directly.
1505  // so build a set, sorted by id(), that provides the ordering.
1506  // further, for memory economy build the set but then transfer
1507  // its contents to vectors, which will be sorted.
1508  std::vector<const DofObject *> ordered_nodes, ordered_elements;
1509  {
1510  std::set<const DofObject *, CompareDofObjectsByID>
1511  ordered_nodes_set (this->get_mesh().local_nodes_begin(),
1512  this->get_mesh().local_nodes_end());
1513 
1514  ordered_nodes.insert(ordered_nodes.end(),
1515  ordered_nodes_set.begin(),
1516  ordered_nodes_set.end());
1517  }
1518  {
1519  std::set<const DofObject *, CompareDofObjectsByID>
1520  ordered_elements_set (this->get_mesh().local_elements_begin(),
1521  this->get_mesh().local_elements_end());
1522 
1523  ordered_elements.insert(ordered_elements.end(),
1524  ordered_elements_set.begin(),
1525  ordered_elements_set.end());
1526  }
1527 
1528  const unsigned int sys_num = this->number();
1529  const unsigned int nv = this->n_vars();
1530 
1531  // Loop over each non-SCALAR variable and each node, and write out the value.
1532  for (unsigned int var=0; var<nv; var++)
1533  if (this->variable(var).type().family != SCALAR)
1534  {
1535  // First write the node DOF values
1536  for (const auto & node : ordered_nodes)
1537  for (auto comp : make_range(node->n_comp(sys_num,var)))
1538  {
1539  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
1541 
1542  io_buffer.push_back((*this->solution)(node->dof_number(sys_num, var, comp)));
1543  }
1544 
1545  // Then write the element DOF values
1546  for (const auto & elem : ordered_elements)
1547  for (auto comp : make_range(elem->n_comp(sys_num,var)))
1548  {
1549  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
1551 
1552  io_buffer.push_back((*this->solution)(elem->dof_number(sys_num, var, comp)));
1553  }
1554  }
1555 
1556  // Finally, write the SCALAR data on the last processor
1557  for (auto var : make_range(this->n_vars()))
1558  if (this->variable(var).type().family == SCALAR)
1559  {
1560  if (this->processor_id() == (this->n_processors()-1))
1561  {
1562  const DofMap & dof_map = this->get_dof_map();
1563  std::vector<dof_id_type> SCALAR_dofs;
1564  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
1565 
1566  for (auto dof : SCALAR_dofs)
1567  io_buffer.push_back((*this->solution)(dof));
1568  }
1569  }
1570 
1571  // 9.)
1572  //
1573  // Actually write the reordered solution vector
1574  // for the ith system to disk
1575 
1576  // set up the comment
1577  {
1578  comment = "# System \"";
1579  comment += this->name();
1580  comment += "\" Solution Vector";
1581  }
1582 
1583  io.data (io_buffer, comment);
1584 
1585  // total_written_size += io_buffer.size();
1586 
1587  // Only write additional vectors if wanted
1588  if (write_additional_data)
1589  {
1590  for (auto & [vec_name, vec] : _vectors)
1591  {
1592  io_buffer.clear();
1593  io_buffer.reserve(vec->local_size());
1594 
1595  // Loop over each non-SCALAR variable and each node, and write out the value.
1596  for (unsigned int var=0; var<nv; var++)
1597  if (this->variable(var).type().family != SCALAR)
1598  {
1599  // First write the node DOF values
1600  for (const auto & node : ordered_nodes)
1601  for (auto comp : make_range(node->n_comp(sys_num,var)))
1602  {
1603  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
1605 
1606  io_buffer.push_back((*vec)(node->dof_number(sys_num, var, comp)));
1607  }
1608 
1609  // Then write the element DOF values
1610  for (const auto & elem : ordered_elements)
1611  for (auto comp : make_range(elem->n_comp(sys_num,var)))
1612  {
1613  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
1615 
1616  io_buffer.push_back((*vec)(elem->dof_number(sys_num, var, comp)));
1617  }
1618  }
1619 
1620  // Finally, write the SCALAR data on the last processor
1621  for (auto var : make_range(this->n_vars()))
1622  if (this->variable(var).type().family == SCALAR)
1623  {
1624  if (this->processor_id() == (this->n_processors()-1))
1625  {
1626  const DofMap & dof_map = this->get_dof_map();
1627  std::vector<dof_id_type> SCALAR_dofs;
1628  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
1629 
1630  for (auto dof : SCALAR_dofs)
1631  io_buffer.push_back((*vec)(dof));
1632  }
1633  }
1634 
1635  // 10.)
1636  //
1637  // Actually write the reordered additional vector
1638  // for this system to disk
1639 
1640  // set up the comment
1641  {
1642  comment = "# System \"";
1643  comment += this->name();
1644  comment += "\" Additional Vector \"";
1645  comment += vec_name;
1646  comment += "\"";
1647  }
1648 
1649  io.data (io_buffer, comment);
1650 
1651  // total_written_size += io_buffer.size();
1652  }
1653  }
1654 
1655  // const Real
1656  // dt = pl.get_elapsed_time(),
1657  // rate = total_written_size*sizeof(Number)/dt;
1658 
1659  // libMesh::err << "Write " << total_written_size << " \"Number\" values\n"
1660  // << " Elapsed time = " << dt << '\n'
1661  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
1662 
1663  // pl.pop("write_parallel_data");
1664 }
FEFamily family
The type of finite element.
Definition: fe_type.h:207
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
const MeshBase & get_mesh() const
Definition: system.h:2277
processor_id_type n_processors() const
unsigned int number() const
Definition: system.h:2269
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static const dof_id_type invalid_id
An invalid id to distinguish an uninitialized DofObject.
Definition: dof_object.h:477
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
const std::string & name() const
Definition: system.h:2261
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
const FEType & type() const
Definition: variable.h:140

◆ write_parameter_data_to_files()

void libMesh::RBParametrized::write_parameter_data_to_files ( const std::string &  continuous_param_file_name,
const std::string &  discrete_param_file_name,
const bool  write_binary_data 
)
inherited

Write out the parameter ranges to files.

Definition at line 197 of file rb_parametrized.C.

References libMesh::RBParametrized::write_discrete_parameter_values_to_file(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

Referenced by libMesh::RBSCMEvaluation::legacy_write_offline_data_to_files(), and libMesh::RBEvaluation::legacy_write_offline_data_to_files().

200 {
201  write_parameter_ranges_to_file(continuous_param_file_name, write_binary_data);
202  write_discrete_parameter_values_to_file(discrete_param_file_name, write_binary_data);
203 }
void write_discrete_parameter_values_to_file(const std::string &file_name, const bool write_binary_data)
Write out the discrete parameter values to file.
void write_parameter_ranges_to_file(const std::string &file_name, const bool write_binary)
Write out the parameter ranges to file.

◆ write_riesz_representors_to_files()

void TransientRBConstruction::write_riesz_representors_to_files ( const std::string &  riesz_representors_dir,
const bool  write_binary_residual_representors 
)
overridevirtual

Write out all the Riesz representor data to files.

Override to write out transient data too.

Reimplemented from libMesh::RBConstruction.

Definition at line 1244 of file transient_rb_construction.C.

References TIMPI::Communicator::barrier(), libMesh::ParallelObject::comm(), libMesh::ENCODE, libMesh::RBConstruction::get_delta_N(), libMesh::RBEvaluation::get_n_basis_functions(), libMesh::RBConstruction::get_rb_evaluation(), libMesh::libmesh_assert(), libMesh::TransientRBEvaluation::M_q_representor, libMesh::out, libMesh::System::solution, libMesh::WRITE, and libMesh::System::write_serialized_data().

1246 {
1247  LOG_SCOPE("write_riesz_representors_to_files()", "TransientRBConstruction");
1248 
1249  // Write out the M_q_representors. These are useful to have when restarting,
1250  // so you don't have to recompute them all over again. There should be
1251  // this->rb_eval->get_n_basis_functions() of these.
1252  libMesh::out << "Writing out the M_q_representors..." << std::endl;
1253 
1254  std::ostringstream file_name;
1255  const std::string riesz_representor_suffix = (write_binary_residual_representors ? ".xdr" : ".dat");
1256 
1257  TransientRBEvaluation & trans_rb_eval = cast_ref<TransientRBEvaluation &>(get_rb_evaluation());
1258 
1259  const unsigned int istop = trans_rb_eval.get_n_basis_functions();
1260  const unsigned int istart = istop-get_delta_N();
1261 
1262  for (std::size_t q=0; q<trans_rb_eval.M_q_representor.size(); ++q)
1263  for (unsigned int i=istart; i<istop; ++i)
1264  {
1265  libMesh::out << "Writing out M_q_representor[" << q << "][" << i << "]..." << std::endl;
1266  libmesh_assert(trans_rb_eval.M_q_representor[q][i]);
1267 
1268  file_name.str(""); // reset filename
1269  file_name << riesz_representors_dir << "/M_q_representor" << i << riesz_representor_suffix;
1270 
1271  {
1272  // No need to copy!
1273  //*solution = *(M_q_representor[q][i]);
1274  trans_rb_eval.M_q_representor[q][i]->swap(*solution);
1275 
1276  Xdr mr_data(file_name.str(),
1277  write_binary_residual_representors ? ENCODE : WRITE);
1278 
1279  write_serialized_data(mr_data, false);
1280 
1281  // Synchronize before moving on
1282  this->comm().barrier();
1283 
1284  // Swap back.
1285  trans_rb_eval.M_q_representor[q][i]->swap(*solution);
1286 
1287  // TODO: bzip the resulting file? See $LIBMESH_DIR/src/mesh/unstructured_mesh.C
1288  // for the system call, be sure to do it only on one processor, etc.
1289  }
1290  }
1291 }
void write_serialized_data(Xdr &io, const bool write_additional_data=true) const
Writes additional data, namely vectors, for this System.
Definition: system_io.C:1668
void barrier() const
const Parallel::Communicator & comm() const
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
unsigned int get_delta_N() const
Get delta_N, the number of basis functions we add to the RB space per iteration of the greedy algorit...
OStreamProxy out
RBEvaluation & get_rb_evaluation()
Get a reference to the RBEvaluation object.

◆ write_serialized_data()

void libMesh::System::write_serialized_data ( Xdr io,
const bool  write_additional_data = true 
) const
inherited

Writes additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh.

This method implements the output of the vectors contained in this System object, embedded in the output of an EquationSystems<T_sys>.

9.) The global solution vector, re-ordered to be node-major (More on this later.)

for each additional vector in the object

10.) The global additional vector, re-ordered to be node-major (More on this later.)

Definition at line 1668 of file system_io.C.

References libMesh::System::_vectors, libMesh::Xdr::comment(), libMesh::System::name(), libMesh::ParallelObject::processor_id(), libMesh::System::solution, and libMesh::System::write_serialized_vector().

Referenced by write_riesz_representors_to_files(), and libMesh::RBConstruction::write_riesz_representors_to_files().

1670 {
1684  parallel_object_only();
1685  std::string comment;
1686 
1687  // PerfLog pl("IO Performance",false);
1688  // pl.push("write_serialized_data");
1689  // std::size_t total_written_size = 0;
1690 
1691  // total_written_size +=
1692  this->write_serialized_vector(io, *this->solution);
1693 
1694  // set up the comment
1695  if (this->processor_id() == 0)
1696  {
1697  comment = "# System \"";
1698  comment += this->name();
1699  comment += "\" Solution Vector";
1700 
1701  io.comment (comment);
1702  }
1703 
1704  // Only write additional vectors if wanted
1705  if (write_additional_data)
1706  {
1707  for (auto & pair : this->_vectors)
1708  {
1709  // total_written_size +=
1710  this->write_serialized_vector(io, *pair.second);
1711 
1712  // set up the comment
1713  if (this->processor_id() == 0)
1714  {
1715  comment = "# System \"";
1716  comment += this->name();
1717  comment += "\" Additional Vector \"";
1718  comment += pair.first;
1719  comment += "\"";
1720  io.comment (comment);
1721  }
1722  }
1723  }
1724 
1725  // const Real
1726  // dt = pl.get_elapsed_time(),
1727  // rate = total_written_size*sizeof(Number)/dt;
1728 
1729  // libMesh::out << "Write " << total_written_size << " \"Number\" values\n"
1730  // << " Elapsed time = " << dt << '\n'
1731  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
1732 
1733  // pl.pop("write_serialized_data");
1734 
1735 
1736 
1737 
1738  // // test the new method
1739  // {
1740  // std::vector<std::string> names;
1741  // std::vector<NumericVector<Number> *> vectors_to_write;
1742 
1743  // names.push_back("Solution Vector");
1744  // vectors_to_write.push_back(this->solution.get());
1745 
1746  // // Only write additional vectors if wanted
1747  // if (write_additional_data)
1748  // {
1749  // std::map<std::string, NumericVector<Number> *>::const_iterator
1750  // pos = _vectors.begin();
1751 
1752  // for (; pos != this->_vectors.end(); ++pos)
1753  // {
1754  // names.push_back("Additional Vector " + pos->first);
1755  // vectors_to_write.push_back(pos->second);
1756  // }
1757  // }
1758 
1759  // total_written_size =
1760  // this->write_serialized_vectors (io, names, vectors_to_write);
1761 
1762  // const Real
1763  // dt2 = pl.get_elapsed_time(),
1764  // rate2 = total_written_size*sizeof(Number)/(dt2-dt);
1765 
1766  // libMesh::out << "Write (new) " << total_written_size << " \"Number\" values\n"
1767  // << " Elapsed time = " << (dt2-dt) << '\n'
1768  // << " Rate = " << rate2/1.e6 << "(MB/sec)\n\n";
1769 
1770  // }
1771 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
const std::string & name() const
Definition: system.h:2261
processor_id_type processor_id() const
dof_id_type write_serialized_vector(Xdr &io, const NumericVector< Number > &vec) const
Writes a vector for this System.
Definition: system_io.C:2118

◆ write_serialized_vectors()

std::size_t libMesh::System::write_serialized_vectors ( Xdr io,
const std::vector< const NumericVector< Number > *> &  vectors 
) const
inherited

Serialize & write a number of identically distributed vectors.

This method allows for optimization for the multiple vector case by only communicating the metadata once.

Definition at line 2259 of file system_io.C.

References libMesh::Xdr::data(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::MeshTools::n_elem(), libMesh::MeshBase::n_elem(), n_nodes, libMesh::MeshBase::n_nodes(), libMesh::System::n_vars(), libMesh::ParallelObject::processor_id(), libMesh::SCALAR, libMesh::System::variable(), libMesh::System::write_SCALAR_dofs(), libMesh::System::write_serialized_blocked_dof_objects(), and libMesh::Xdr::writing().

Referenced by libMesh::RBEvaluation::write_out_vectors().

2261 {
2262  parallel_object_only();
2263 
2264  libmesh_assert (io.writing());
2265 
2266  // Cache these - they are not free!
2267  const dof_id_type
2268  n_nodes = this->get_mesh().n_nodes(),
2269  n_elem = this->get_mesh().n_elem();
2270 
2271  std::size_t written_length = 0;
2272 
2273  if (this->processor_id() == 0)
2274  {
2275  unsigned int
2276  n_vec = cast_int<unsigned int>(vectors.size());
2277  dof_id_type
2278  vec_size = vectors.empty() ? 0 : vectors[0]->size();
2279  // Set the number of vectors
2280  io.data(n_vec, "# number of vectors");
2281  // Set the buffer size
2282  io.data(vec_size, "# vector length");
2283  }
2284 
2285  //---------------------------------
2286  // Collect the values for all nodes
2287  written_length +=
2288  this->write_serialized_blocked_dof_objects (vectors,
2289  n_nodes,
2290  this->get_mesh().local_nodes_begin(),
2291  this->get_mesh().local_nodes_end(),
2292  io);
2293 
2294  //------------------------------------
2295  // Collect the values for all elements
2296  written_length +=
2297  this->write_serialized_blocked_dof_objects (vectors,
2298  n_elem,
2299  this->get_mesh().local_elements_begin(),
2300  this->get_mesh().local_elements_end(),
2301  io);
2302 
2303  //-------------------------------------------
2304  // Finally loop over all the SCALAR variables
2305  for (const NumericVector<Number> * vec : vectors)
2306  for (auto var : make_range(this->n_vars()))
2307  if (this->variable(var).type().family == SCALAR)
2308  {
2309  libmesh_assert_not_equal_to (vec, 0);
2310 
2311  written_length +=
2312  this->write_SCALAR_dofs (*vec, var, io);
2313  }
2314 
2315  return written_length;
2316 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
dof_id_type n_elem(const MeshBase::const_element_iterator &begin, const MeshBase::const_element_iterator &end)
Count up the number of elements of a specific type (as defined by an iterator range).
Definition: mesh_tools.C:850
unsigned int write_SCALAR_dofs(const NumericVector< Number > &vec, const unsigned int var, Xdr &io) const
Writes the SCALAR dofs associated with var to the stream io.
Definition: system_io.C:2062
const MeshBase & get_mesh() const
Definition: system.h:2277
const dof_id_type n_nodes
Definition: tecplot_io.C:67
libmesh_assert(ctx)
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
virtual dof_id_type n_elem() const =0
processor_id_type processor_id() const
template class LIBMESH_EXPORT NumericVector< Number >
virtual dof_id_type n_nodes() const =0
std::size_t write_serialized_blocked_dof_objects(const std::vector< const NumericVector< Number > *> &vecs, const dof_id_type n_objects, const iterator_type begin, const iterator_type end, Xdr &io, const unsigned int var_to_write=libMesh::invalid_uint) const
Writes an output vector to the stream io for a set of DofObjects.
Definition: system_io.C:1776
uint8_t dof_id_type
Definition: id_types.h:67

◆ zero_constrained_dofs_on_vector()

void libMesh::RBConstruction::zero_constrained_dofs_on_vector ( NumericVector< Number > &  vector) const
inherited

It is sometimes useful to be able to zero vector entries that correspond to constrained dofs.

Definition at line 427 of file rb_construction.C.

References libMesh::NumericVector< T >::close(), libMesh::DofMap::end_dof(), libMesh::DofMap::first_dof(), libMesh::System::get_dof_map(), libMesh::DofMap::is_constrained_dof(), and libMesh::NumericVector< T >::set().

428 {
429 #ifdef LIBMESH_ENABLE_CONSTRAINTS
430  const DofMap & dof_map = get_dof_map();
431 
432  for (dof_id_type i=dof_map.first_dof(); i<dof_map.end_dof(); i++)
433  {
435  {
436  vector.set(i, 0.);
437  }
438  }
439 #endif
440 
441  vector.close();
442 }
bool is_constrained_dof(const dof_id_type dof) const
Definition: dof_map.h:2182
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
virtual void set(const numeric_index_type i, const T value)=0
Sets v(i) = value.
const DofMap & get_dof_map() const
Definition: system.h:2293
uint8_t dof_id_type
Definition: id_types.h:67

◆ zero_variable()

void libMesh::System::zero_variable ( NumericVector< Number > &  v,
unsigned int  var_num 
) const
inherited

Zeroes all dofs in v that correspond to variable number var_num.

Definition at line 1616 of file system.C.

References libMesh::System::get_mesh(), mesh, libMesh::System::n_vars(), libMesh::System::number(), and libMesh::NumericVector< T >::set().

1618 {
1619  /* Make sure the call makes sense. */
1620  libmesh_assert_less (var_num, this->n_vars());
1621 
1622  /* Get a reference to the mesh. */
1623  const MeshBase & mesh = this->get_mesh();
1624 
1625  /* Check which system we are. */
1626  const unsigned int sys_num = this->number();
1627 
1628  // Loop over nodes.
1629  for (const auto & node : mesh.local_node_ptr_range())
1630  {
1631  unsigned int n_comp = node->n_comp(sys_num,var_num);
1632  for (unsigned int i=0; i<n_comp; i++)
1633  {
1634  const dof_id_type index = node->dof_number(sys_num,var_num,i);
1635  v.set(index,0.0);
1636  }
1637  }
1638 
1639  // Loop over elements.
1640  for (const auto & elem : mesh.active_local_element_ptr_range())
1641  {
1642  unsigned int n_comp = elem->n_comp(sys_num,var_num);
1643  for (unsigned int i=0; i<n_comp; i++)
1644  {
1645  const dof_id_type index = elem->dof_number(sys_num,var_num,i);
1646  v.set(index,0.0);
1647  }
1648  }
1649 }
MeshBase & mesh
const MeshBase & get_mesh() const
Definition: system.h:2277
unsigned int number() const
Definition: system.h:2269
virtual void set(const numeric_index_type i, const T value)=0
Sets v(i) = value.
unsigned int n_vars() const
Definition: system.h:2349
uint8_t dof_id_type
Definition: id_types.h:67

Member Data Documentation

◆ _communicator

const Parallel::Communicator& libMesh::ParallelObject::_communicator
protectedinherited

◆ _counts [1/2]

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

Actually holds the data.

Definition at line 124 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::get_info().

◆ _counts [2/2]

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

Actually holds the data.

Definition at line 124 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::get_info().

◆ _enable_print_counter [1/2]

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 143 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _enable_print_counter [2/2]

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 143 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _final_linear_residual

Real libMesh::LinearImplicitSystem::_final_linear_residual
protectedinherited

◆ _mutex [1/2]

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 137 of file reference_counter.h.

◆ _mutex [2/2]

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 137 of file reference_counter.h.

◆ _n_linear_iterations

unsigned int libMesh::LinearImplicitSystem::_n_linear_iterations
protectedinherited

◆ _n_objects [1/2]

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 132 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _n_objects [2/2]

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 132 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _shell_matrix

ShellMatrix<Number>* libMesh::LinearImplicitSystem::_shell_matrix
protectedinherited

User supplies shell matrix or nullptr if no shell matrix is used.

Definition at line 200 of file linear_implicit_system.h.

Referenced by libMesh::LinearImplicitSystem::attach_shell_matrix(), libMesh::LinearImplicitSystem::get_shell_matrix(), and libMesh::LinearImplicitSystem::solve().

◆ _subset

const SystemSubset* libMesh::LinearImplicitSystem::_subset
protectedinherited

The current subset on which to solve (or nullptr if none).

Definition at line 205 of file linear_implicit_system.h.

Referenced by libMesh::LinearImplicitSystem::restrict_solve_to(), and libMesh::LinearImplicitSystem::solve().

◆ _subset_solve_mode

SubsetSolveMode libMesh::LinearImplicitSystem::_subset_solve_mode
protectedinherited

If restrict-solve-to-subset mode is active, this member decides what happens with the dofs outside the subset.

Definition at line 211 of file linear_implicit_system.h.

Referenced by libMesh::LinearImplicitSystem::restrict_solve_to(), and libMesh::LinearImplicitSystem::solve().

◆ assemble_before_solve

bool libMesh::System::assemble_before_solve
inherited

Flag which tells the system to whether or not to call the user assembly function during each call to solve().

By default, every call to solve() begins with a call to the user assemble, so this flag is true. (For explicit systems, "solving" the system occurs during the assembly step, so this flag is always true for explicit systems.)

You will only want to set this to false if you need direct control over when the system is assembled, and are willing to track the state of its assembly yourself. An example of such a case is an implicit system with multiple right hand sides. In this instance, a single assembly would likely be followed with multiple calls to solve.

The frequency system and Newmark system have their own versions of this flag, called _finished_assemble, which might be able to be replaced with this more general concept.

Definition at line 1527 of file system.h.

Referenced by libMesh::ImplicitSystem::adjoint_solve(), libMesh::ImplicitSystem::disable_cache(), libMesh::System::disable_cache(), main(), libMesh::RBConstruction::RBConstruction(), libMesh::RBSCMConstruction::RBSCMConstruction(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::EigenSystem::solve(), libMesh::CondensedEigenSystem::solve(), and libMesh::LinearImplicitSystem::solve().

◆ assert_convergence

bool libMesh::RBConstruction::assert_convergence
protectedinherited

◆ compute_RB_inner_product

bool libMesh::RBConstruction::compute_RB_inner_product
inherited

Boolean flag to indicate whether we compute the RB_inner_product_matrix.

This is false by default in RBConstruction since (in the default implementation) the RB inner-product matrix will just be the identity. But we may need the inner-product matrix subclasses.

Definition at line 610 of file rb_construction.h.

Referenced by TransientRBConstruction(), and libMesh::RBConstruction::update_RB_system_matrices().

◆ compute_truth_projection_error

bool libMesh::TransientRBConstruction::compute_truth_projection_error

Boolean flag that indicates whether we will compute the projection error for the truth solution into the RB space (at every time level).

This typically only needs to true during a call to train_reduced_basis.

Definition at line 307 of file transient_rb_construction.h.

Referenced by train_reduced_basis(), and truth_solve().

◆ current_local_solution

std::unique_ptr<NumericVector<Number> > libMesh::System::current_local_solution
inherited

All the values I need to compute my contribution to the simulation at hand.

Think of this as the current solution with any ghost values needed from other processors. This vector is necessarily larger than the solution vector in the case of a parallel simulation. The update() member is used to synchronize the contents of the solution and current_local_solution vectors.

Definition at line 1585 of file system.h.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::UniformRefinementEstimator::_estimate_error(), alternative_fe_assembly(), HDGProblem::assemble(), libMesh::NonlinearImplicitSystem::assembly(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::System::clear(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::System::current_solution(), DMlibMeshFunction(), DMlibMeshJacobian(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), fe_assembly(), libMesh::System::init_data(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::FEMContext::pre_fe_reinit(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::System::re_update(), libMesh::System::reinit(), libMesh::System::restrict_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), SolidSystem::save_initial_mesh(), libMesh::RBConstruction::set_context_solution_vec(), setup(), MeshFunctionTest::test_subdomain_id_sets(), MeshInputTest::testCopyElementVectorImpl(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), truth_assembly(), truth_solve(), libMesh::System::update(), libMesh::Nemesis_IO_Helper::write_element_values(), and libMesh::Nemesis_IO_Helper::write_nodal_solution().

◆ delta_N

unsigned int libMesh::RBConstruction::delta_N
protectedinherited

◆ exit_on_repeated_greedy_parameters

bool libMesh::RBConstruction::exit_on_repeated_greedy_parameters
inherited

Boolean flag to indicate whether we exit the greedy if we select the same parameters twice in a row.

In some problems this indicates that the greedy has "saturated" typically due to numerical rounding effects.

Definition at line 587 of file rb_construction.h.

Referenced by libMesh::RBConstruction::greedy_termination_test(), and TransientRBConstruction().

◆ extra_linear_solver

LinearSolver<Number>* libMesh::RBConstruction::extra_linear_solver
inherited

Also, we store a pointer to an extra linear solver.

This can be useful if we want to pass in the linear solver from somewhere else. For example, if a solver is already primed elsewhere then it can be more efficient to use that solver.

Definition at line 536 of file rb_construction.h.

Referenced by libMesh::RBConstruction::enrich_basis_from_rhs_terms(), and libMesh::RBConstruction::truth_solve().

◆ extra_quadrature_order

int libMesh::System::extra_quadrature_order
inherited

A member int that can be employed to indicate increased or reduced quadrature order.

Note
For FEMSystem users, by default, when calling the user-defined residual functions, the FEMSystem will first set up an appropriate FEType::default_quadrature_rule() object for performing the integration. This rule will integrate elements of order up to 2*p+1 exactly (where p is the sum of the base FEType and local p refinement levels), but if additional (or reduced) quadrature accuracy is desired then this extra_quadrature_order (default 0) will be added.

Definition at line 1558 of file system.h.

Referenced by CurlCurlSystem::init_data(), and set_system_parameters().

◆ Fq_representor

std::vector<std::unique_ptr<NumericVector<Number> > > libMesh::RBConstruction::Fq_representor
inherited

◆ Fq_representor_innerprods

std::vector<Number> libMesh::RBConstruction::Fq_representor_innerprods
inherited

Vectors storing the residual representor inner products to be used in computing the residuals online.

We store the Fq representor norms here because they are independent of a reduced basis space. The basis dependent representors are stored in RBEvaluation.

Definition at line 570 of file rb_construction.h.

Referenced by libMesh::RBConstruction::allocate_data_structures(), and libMesh::RBConstruction::compute_Fq_representor_innerprods().

◆ Fq_representor_innerprods_computed

bool libMesh::RBConstruction::Fq_representor_innerprods_computed
inherited

A boolean flag to indicate whether or not the Fq representor norms have already been computed — used to make sure that we don't recompute them unnecessarily.

Definition at line 641 of file rb_construction.h.

Referenced by libMesh::RBConstruction::clear(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::read_riesz_representors_from_files(), and libMesh::RBConstruction::recompute_all_residual_terms().

◆ impose_internal_fluxes

bool libMesh::RBConstruction::impose_internal_fluxes
inherited

Boolean flag to indicate whether we impose "fluxes" (i.e.

element boundary contributions to the weak form) on internal element boundaries in the assembly routines.

Definition at line 594 of file rb_construction.h.

Referenced by libMesh::RBConstruction::add_scaled_matrix_and_vector().

◆ init_filename

std::string libMesh::TransientRBConstruction::init_filename

The filename of the file containing the initial condition projected onto the truth mesh.

Definition at line 313 of file transient_rb_construction.h.

Referenced by initialize_truth(), print_info(), and process_parameters_file().

◆ inner_product_matrix

std::unique_ptr<SparseMatrix<Number> > libMesh::RBConstruction::inner_product_matrix
inherited

◆ inner_product_solver

std::unique_ptr<LinearSolver<Number> > libMesh::RBConstruction::inner_product_solver
inherited

We store an extra linear solver object which we can optionally use for solving all systems in which the system matrix is set to inner_product_matrix.

Definition at line 528 of file rb_construction.h.

Referenced by libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::RBConstruction::initialize_rb_construction(), update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

◆ inner_product_storage_vector

std::unique_ptr<NumericVector<Number> > libMesh::RBConstructionBase< LinearImplicitSystem >::inner_product_storage_vector
protectedinherited

◆ L2_assembly

ElemAssembly* libMesh::TransientRBConstruction::L2_assembly
protected

Function pointer for assembling the L2 matrix.

Definition at line 399 of file transient_rb_construction.h.

Referenced by assemble_L2_matrix(), get_L2_assembly(), and set_L2_assembly().

◆ L2_matrix

std::unique_ptr<SparseMatrix<Number> > libMesh::TransientRBConstruction::L2_matrix

◆ linear_solver

std::unique_ptr<LinearSolver<Number> > libMesh::ImplicitSystem::linear_solver
mutableinherited

This class handles all the details of interfacing with various linear algebra packages like PETSc or LASPACK.

This is a public member for backwards compatibility reasons, but in general it's better to use get_linear_solver() to access this member, since that function will also handle initialization if it hasn't already been taken care of.

Definition at line 336 of file implicit_system.h.

Referenced by libMesh::LinearImplicitSystem::clear(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::ContinuationSystem::continuation_solve(), libMesh::ContinuationSystem::ContinuationSystem(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::LinearImplicitSystem::get_linear_solver(), libMesh::LinearImplicitSystem::init_data(), libMesh::LinearImplicitSystem::LinearImplicitSystem(), libMesh::LinearImplicitSystem::reinit(), libMesh::FrequencySystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::ContinuationSystem::solve_tangent(), and truth_solve().

◆ M_q_vector

std::vector<std::unique_ptr<SparseMatrix<Number> > > libMesh::TransientRBConstruction::M_q_vector

Vector storing the Q_m matrices from the mass operator.

Definition at line 281 of file transient_rb_construction.h.

Referenced by allocate_data_structures(), clear(), get_M_q(), and update_residual_terms().

◆ matrix

SparseMatrix<Number>* libMesh::ImplicitSystem::matrix
inherited

The system matrix.

Implicit systems are characterized by the need to solve the linear system Ax=b. This is the system matrix A.

Public access to this member variable will be deprecated in the future! Use get_system_matrix() instead.

Definition at line 319 of file implicit_system.h.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), add_M_C_K_helmholtz(), libMesh::ImplicitSystem::add_matrices(), libMesh::ImplicitSystem::adjoint_solve(), libMesh::ImplicitSystem::assemble(), assemble_func(), libMesh::FEMSystem::assembly(), libMesh::LinearImplicitSystem::assembly(), libMesh::NonlinearImplicitSystem::assembly(), libMesh::ImplicitSystem::clear(), libMesh::NewmarkSystem::compute_matrix(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::ContinuationSystem::continuation_solve(), DMCreateMatrix_libMesh(), DMlibMeshJacobian(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), fill_dirichlet_bc(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::get_system_matrix(), main(), periodic_bc_test_poisson(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::NewtonSolver::solve(), libMesh::PetscDiffSolver::solve(), libMesh::NoxNonlinearSolver< Number >::solve(), libMesh::EigenTimeSolver::solve(), libMesh::FrequencySystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::NonlinearImplicitSystem::solve(), libMesh::ContinuationSystem::solve_tangent(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), truth_solve(), libMesh::RBConstruction::truth_solve(), libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve(), and libMesh::ImplicitSystem::weighted_sensitivity_solve().

◆ max_truth_solves

int libMesh::TransientRBConstruction::max_truth_solves
protected

Maximum number of truth solves in the POD-Greedy.

This can be different from Nmax in the transient case since we may add more than one basis function per truth solve. If negative, it's ignored.

Definition at line 394 of file transient_rb_construction.h.

Referenced by get_max_truth_solves(), print_info(), process_parameters_file(), and set_max_truth_solves().

◆ Nmax

unsigned int libMesh::RBConstruction::Nmax
protectedinherited

◆ non_dirichlet_L2_matrix

std::unique_ptr<SparseMatrix<Number> > libMesh::TransientRBConstruction::non_dirichlet_L2_matrix

The L2 matrix without Dirichlet conditions enforced.

(This is only computed if store_non_dirichlet_operators == true.)

Definition at line 276 of file transient_rb_construction.h.

Referenced by allocate_data_structures(), assemble_misc_matrices(), and get_all_matrices().

◆ non_dirichlet_M_q_vector

std::vector<std::unique_ptr<SparseMatrix<Number> > > libMesh::TransientRBConstruction::non_dirichlet_M_q_vector

We sometimes also need a second set of M_q matrices that do not have the Dirichlet boundary conditions enforced.

Definition at line 288 of file transient_rb_construction.h.

Referenced by allocate_data_structures(), clear(), and get_non_dirichlet_M_q().

◆ nonzero_initialization

bool libMesh::TransientRBConstruction::nonzero_initialization

Boolean flag to indicate whether we are using a non-zero initialization.

If we are, then an initialization function must be attached to the system.

Definition at line 300 of file transient_rb_construction.h.

Referenced by add_IC_to_RB_space(), initialize_truth(), print_info(), and process_parameters_file().

◆ old_local_solution

NumericVector<Number>* libMesh::TransientSystem< RBConstruction >::old_local_solution
inherited

All the values I need to compute my contribution to the simulation at hand.

Think of this as the current solution with any ghost values needed from other processors.

Definition at line 126 of file transient_system.h.

Referenced by truth_solve().

◆ older_local_solution

NumericVector<Number>* libMesh::TransientSystem< RBConstruction >::older_local_solution
inherited

All the values I need to compute my contribution to the simulation at hand.

Think of this as the current solution with any ghost values needed from other processors.

Definition at line 134 of file transient_system.h.

◆ output_dual_innerprods

std::vector<std::vector<Number > > libMesh::RBConstruction::output_dual_innerprods
inherited

The vector storing the dual norm inner product terms for each output.

Definition at line 553 of file rb_construction.h.

Referenced by libMesh::RBConstruction::allocate_data_structures(), and libMesh::RBConstruction::compute_output_dual_innerprods().

◆ output_dual_innerprods_computed

bool libMesh::RBConstruction::output_dual_innerprods_computed
protectedinherited

A boolean flag to indicate whether or not the output dual norms have already been computed — used to make sure that we don't recompute them unnecessarily.

Definition at line 869 of file rb_construction.h.

Referenced by libMesh::RBConstruction::compute_output_dual_innerprods().

◆ POD_tol

Real libMesh::TransientRBConstruction::POD_tol
protected

If positive, this tolerance determines the number of POD modes we add to the space on a call to enrich_RB_space().

If negative, we add delta_N POD modes.

Definition at line 386 of file transient_rb_construction.h.

Referenced by enrich_RB_space(), get_POD_tol(), process_parameters_file(), and set_POD_tol().

◆ quiet_mode

bool libMesh::RBConstructionBase< LinearImplicitSystem >::quiet_mode
protectedinherited

Flag to indicate whether we print out extra information during the Offline stage.

Definition at line 259 of file rb_construction_base.h.

Referenced by libMesh::RBConstruction::process_parameters_file().

◆ RB_ic_proj_rhs_all_N

DenseVector<Number> libMesh::TransientRBConstruction::RB_ic_proj_rhs_all_N
protected

The vector that stores the right-hand side for the initial condition projections.

Definition at line 405 of file transient_rb_construction.h.

Referenced by allocate_data_structures(), assemble_affine_expansion(), and update_RB_initial_condition_all_N().

◆ rhs

NumericVector<Number>* libMesh::ExplicitSystem::rhs
inherited

The system matrix.

Implicit systems are characterized by the need to solve the linear system Ax=b. This is the right-hand-side vector b.

Definition at line 124 of file explicit_system.h.

Referenced by libMesh::__libmesh_petsc_diff_solver_residual(), add_M_C_K_helmholtz(), libMesh::ExplicitSystem::add_system_rhs(), assemble(), libMesh::ImplicitSystem::assemble(), LinearElasticity::assemble(), assemble_1D(), assemble_biharmonic(), assemble_divgrad(), assemble_elasticity(), assemble_ellipticdg(), assemble_func(), assemble_laplace(), assemble_matrix_and_rhs(), assemble_poisson(), libMesh::ImplicitSystem::assemble_residual_derivatives(), assemble_shell(), assemble_stokes(), assemble_wave(), libMesh::FEMSystem::assembly(), libMesh::LinearImplicitSystem::assembly(), libMesh::NonlinearImplicitSystem::assembly(), assembly_with_dg_fem_context(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::Problem_Interface::computeF(), libMesh::ContinuationSystem::continuation_solve(), DMlibMeshFunction(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), fill_dirichlet_bc(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::NewtonSolver::line_search(), periodic_bc_test_poisson(), HeatSystem::perturb_accumulate_residuals(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), libMesh::NewtonSolver::solve(), libMesh::PetscDiffSolver::solve(), libMesh::FrequencySystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::NonlinearImplicitSystem::solve(), libMesh::ContinuationSystem::solve_tangent(), truth_assembly(), libMesh::RBConstruction::truth_assembly(), truth_solve(), libMesh::RBConstruction::truth_solve(), update_residual_terms(), libMesh::RBConstruction::update_residual_terms(), libMesh::NewmarkSystem::update_rhs(), libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve(), and libMesh::ImplicitSystem::weighted_sensitivity_solve().

◆ serial_training_set

bool libMesh::RBConstructionBase< LinearImplicitSystem >::serial_training_set
protectedinherited

This boolean flag indicates whether or not the training set should be the same on all processors.

By default it is false, but in the case of the Empirical Interpolation Method (RBEIMConstruction), for example, we need the training set to be identical on all processors.

Definition at line 267 of file rb_construction_base.h.

Referenced by libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBConstruction::set_RB_training_type(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

◆ skip_degenerate_sides

bool libMesh::RBConstruction::skip_degenerate_sides
inherited

In some cases meshes are intentionally created with degenerate sides as a way to represent, say, triangles using a hex-only mesh.

In this situation we should detect and skip any degenerate sides in order to prevent zero or negative element Jacobian errors.

Definition at line 602 of file rb_construction.h.

Referenced by libMesh::RBConstruction::add_scaled_matrix_and_vector().

◆ skip_residual_in_train_reduced_basis

bool libMesh::RBConstruction::skip_residual_in_train_reduced_basis
inherited

Boolean flag to indicate if we skip residual calculations in train_reduced_basis.

This should only be used in special cases, e.g. when we know a priori that we want exactly one basis function and hence we do not need the residual based error indicator.

Definition at line 579 of file rb_construction.h.

Referenced by libMesh::RBConstruction::train_reduced_basis_with_greedy().

◆ solution

std::unique_ptr<NumericVector<Number> > libMesh::System::solution
inherited

Data structure to hold solution values.

Definition at line 1573 of file system.h.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), add_IC_to_RB_space(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::ContinuationSystem::apply_predictor(), HDGProblem::assemble(), assemble_affine_expansion(), libMesh::FEMSystem::assembly(), libMesh::LinearImplicitSystem::assembly(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::RBConstruction::check_if_zero_truth_solve(), libMesh::System::clear(), libMesh::System::compare(), compute_enriched_soln(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::NewmarkSolver::compute_initial_accel(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::ContinuationSystem::continuation_solve(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::GMVIO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), DMCreateGlobalVector_libMesh(), DMlibMeshFunction(), DMlibMeshJacobian(), libMesh::UnsteadySolver::du(), libMesh::RBConstruction::enrich_RB_space(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::RBSCMConstruction::evaluate_stability_constant(), libMesh::EigenSystem::get_eigenpair(), libMesh::CondensedEigenSystem::get_eigenpair(), LinearElasticityWithContact::get_least_and_max_gap_function(), libMesh::System::init_data(), libMesh::ContinuationSystem::initialize_tangent(), initialize_truth(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::RBConstruction::load_basis_function(), load_rb_solution(), libMesh::RBConstruction::load_rb_solution(), main(), libMesh::DofMap::max_constraint_error(), libMesh::FEMSystem::mesh_position_get(), libMesh::ErrorVector::plot_error(), libMesh::RBConstruction::print_basis_function_orthogonality(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), libMesh::System::re_update(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_serialized_data(), libMesh::System::reinit(), libMesh::System::restrict_vectors(), libMesh::MemoryHistoryData::retrieve_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), libMesh::ContinuationSystem::save_current_solution(), set_error_temporal_data(), setup(), WriteVecAndScalar::setupTests(), libMesh::TwostepTimeSolver::solve(), libMesh::NewtonSolver::solve(), libMesh::PetscDiffSolver::solve(), libMesh::FrequencySystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::NonlinearImplicitSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::ContinuationSystem::solve_tangent(), libMesh::MemoryHistoryData::store_vectors(), ConstraintOperatorTest::test1DCoarseningOperator(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), SystemsTest::testBoundaryProjectCube(), SystemsTest::testDofCouplingWithVarGroups(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), SystemsTest::testPostInitAddVector(), SystemsTest::testProjectCubeWithMeshFunction(), MeshInputTest::testProjectionRegression(), WriteVecAndScalar::testSolution(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::DirectSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::BoundaryVolumeSolutionTransfer::transfer_volume_boundary(), truth_solve(), libMesh::RBConstruction::truth_solve(), libMesh::System::update(), libMesh::System::update_global_solution(), update_RB_initial_condition_all_N(), update_residual_terms(), libMesh::RBConstruction::update_residual_terms(), libMesh::ContinuationSystem::update_solution(), libMesh::NewmarkSystem::update_u_v_a(), libMesh::DTKAdapter::update_variable_values(), libMesh::RBEIMEvaluation::write_out_projected_basis_functions(), libMesh::System::write_parallel_data(), write_riesz_representors_to_files(), libMesh::RBConstruction::write_riesz_representors_to_files(), and libMesh::System::write_serialized_data().

◆ store_non_dirichlet_operators

bool libMesh::RBConstruction::store_non_dirichlet_operators
inherited

◆ store_untransformed_basis

bool libMesh::RBConstruction::store_untransformed_basis
inherited

Boolean flag to indicate whether we store a second copy of the basis without constraints or dof transformations applied to it.

This is necessary when we have dof transformations and need to calculate the residual R(U) = C^T F - C^T A C U, since we need to evaluate R(U) using the untransformed basis U rather than C U to avoid "double applying" dof transformations in C.

Definition at line 627 of file rb_construction.h.

Referenced by libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::RBConstruction::enrich_RB_space(), libMesh::RBConstruction::truth_solve(), and libMesh::RBConstruction::update_residual_terms().

◆ temporal_data

std::vector<std::unique_ptr<NumericVector<Number> > > libMesh::TransientRBConstruction::temporal_data
private

Dense matrix to store the data that we use for the temporal POD.

Definition at line 414 of file transient_rb_construction.h.

Referenced by allocate_data_structures(), clear(), enrich_RB_space(), get_error_temporal_data(), and set_error_temporal_data().

◆ time

Real libMesh::System::time
inherited

For time-dependent problems, this is the time t at the beginning of the current timestep.

Note
For DifferentiableSystem users: do not access this time during an assembly! Use the DiffContext::time value instead to get correct results.

Definition at line 1595 of file system.h.

Referenced by libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubProjector::construct_projection(), HeatSystem::element_qoi(), fill_dirichlet_bc(), libMesh::ExactErrorEstimator::find_squared_element_error(), initialize(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::UnsteadySolver::integrate_adjoint_sensitivity(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::EulerSolver::integrate_qoi_timestep(), main(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), libMesh::System::reinit_constraints(), libMesh::UnsteadySolver::retrieve_timestep(), and libMesh::TwostepTimeSolver::solve().

◆ training_error_bounds

std::vector<Real> libMesh::RBConstruction::training_error_bounds
inherited

Vector storing the values of the error bound for each parameter in the training set — the parameter giving the largest error bound is chosen for the next snapshot in the Greedy basis training.

Definition at line 521 of file rb_construction.h.

Referenced by libMesh::RBConstruction::compute_max_error_bound().

◆ truth_outputs

std::vector<Number > libMesh::RBConstruction::truth_outputs
inherited

Vector storing the truth output values from the most recent truth solve.

Definition at line 547 of file rb_construction.h.

Referenced by libMesh::RBConstruction::allocate_data_structures(), and libMesh::RBConstruction::truth_solve().

◆ truth_outputs_all_k

std::vector<std::vector<Number> > libMesh::TransientRBConstruction::truth_outputs_all_k

The truth outputs for all time-levels from the most recent truth_solve.

Definition at line 294 of file transient_rb_construction.h.

Referenced by allocate_data_structures(), and truth_solve().

◆ use_empty_rb_solve_in_greedy

bool libMesh::RBConstruction::use_empty_rb_solve_in_greedy
inherited

A boolean flag to indicate whether or not we initialize the Greedy algorithm by performing rb_solves on the training set with an "empty" (i.e.

N=0) reduced basis space.

Definition at line 634 of file rb_construction.h.

Referenced by libMesh::RBConstruction::train_reduced_basis_with_greedy().

◆ use_fixed_solution

bool libMesh::System::use_fixed_solution
inherited

A boolean to be set to true by systems using elem_fixed_solution, for optional use by e.g.

stabilized methods. False by default.

Note
For FEMSystem users, if this variable is set to true, it must be before init_data() is called.

Definition at line 1543 of file system.h.

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), libMesh::SteadySolver::_general_residual(), libMesh::NewmarkSolver::_general_residual(), libMesh::DifferentiableSystem::clear(), libMesh::DiffContext::DiffContext(), and libMesh::FEMContext::pre_fe_reinit().

◆ verbose_mode

bool libMesh::RBParametrized::verbose_mode
inherited

Public boolean to toggle verbose mode.

Definition at line 191 of file rb_parametrized.h.

Referenced by libMesh::RBParametrized::check_if_valid_params().

◆ zero_out_matrix_and_rhs

bool libMesh::ImplicitSystem::zero_out_matrix_and_rhs
inherited

By default, the system will zero out the matrix and the right hand side.

If this flag is false, it is the responsibility of the client code to take care of setting these to zero before assembly begins

Definition at line 326 of file implicit_system.h.

Referenced by libMesh::ImplicitSystem::assemble().


The documentation for this class was generated from the following files: